IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i1p309-317.html
   My bibliography  Save this article

An Econometric Analysis of Residential Water Demand in Cyprus

Author

Listed:
  • Alexandros Polycarpou
  • Theodoros Zachariadis

Abstract

This paper analyses econometrically residential water demand in the three major urban areas of Cyprus, a semi-arid country with medium to high income levels. Water demand turns out to be inelastic, but not insensitive, to prices; price elasticity is less than unity in absolute terms, but significantly different from zero. The analysis further shows that periodic interruptions in household water supply, which were applied as an urgent water saving measure in 2008–2009, did not encourage water conservation among the population. The paper discusses these results, pointing at the need for appropriate water pricing policies and long-term planning in order to move towards sustainable water resource management. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Alexandros Polycarpou & Theodoros Zachariadis, 2013. "An Econometric Analysis of Residential Water Demand in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 309-317, January.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:309-317
    DOI: 10.1007/s11269-012-0187-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0187-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0187-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olmstead, Sheila & Stavins, Robert, 2008. "Comparing Price and Non-Price Approaches to Urban Water Conservation," Working Paper Series rwp08-034, Harvard University, John F. Kennedy School of Government.
    2. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    3. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    4. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    5. Valeria Di Cosmo, 2011. "Are the Consumers Always Ready to Pay? A Quasi-Almost Ideal Demand System for the Italian Water Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 465-481, January.
    6. Jean-Daniel Rinaudo & Noémie Neverre & Marielle Montginoul, 2012. "Simulating the Impact of Pricing Policies on Residential Water Demand: A Southern France Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2057-2068, May.
    7. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    8. Antonio Musolesi & Mario Nosvelli, 2007. "Dynamics of residential water consumption in a panel of Italian municipalities," Applied Economics Letters, Taylor & Francis Journals, vol. 14(6), pages 441-444.
    9. Robert P. Hagemann, 2012. "Fiscal Consolidation: Part 6. What Are the Best Policy Instruments for Fiscal Consolidation?," OECD Economics Department Working Papers 937, OECD Publishing.
    10. Christos Zoumides & Theodoros Zachariadis, 2009. "Irrigation Water Pricing in Southern Europe and Cyprus: The effects of the EU Common Agricultural Policy and the Water Framework Directive," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 3(1), pages 99-122, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodoros Zachariadis, 2016. "Proposal for a Green Tax Reform in Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 10(2), pages 127-139, December.
    2. Jana Hortová & Ladislav Kristoufek, 2014. "Price elasticity of household water demand in the Czech Republic," Working Papers IES 2014/38, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2014.
    3. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
    4. Elham Erfanian & Alan R. Collins, 2018. "Charges for Water and Access: What Explains the Differences Among West Virginian Municipalities?," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-27, October.
    5. David Hoyos & Alaitz Artabe, 2017. "Regional Differences in the Price Elasticity of Residential Water Demand in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 847-865, February.
    6. Elham Erfanian & Alan R. Collins, 2017. "Charges for Water and Access: What Explains the Differences in West Virginia Municipalities?," Working Papers Working Paper 2017-02, Regional Research Institute, West Virginia University.
    7. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    8. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.
    9. Víctor Manuel Fernández Pacheco & Rodolfo Espina Valdés & Enrique Bonet Gil & Antonio Navarro Manso & Eduardo Álvarez Álvarez, 2020. "Techno-Economic Analysis of Residential Water Meters: A Practical Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2471-2484, June.
    10. Keivan Karimlou & Nemat Hassani & Abdollah Rashidi Mehrabadi & Mohammad Reza Nazari, 2019. "Calculating Price Elasticity of Water Demand Using Gene Expression Programming Based on Economic, Social and Meteorological Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4171-4188, September.
    11. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    12. Mengshan Lee & Berrin Tansel & Maribel Balbin, 2013. "Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2531-2540, May.
    13. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    14. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
    15. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuente, David, 2019. "The design and evaluation of water tariffs: A systematic review," Utilities Policy, Elsevier, vol. 61(C).
    2. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    3. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    4. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    5. Jana Hortová & Ladislav Kristoufek, 2014. "Price elasticity of household water demand in the Czech Republic," Working Papers IES 2014/38, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2014.
    6. Joachim Schleich & Thomas Hillenbrand, 2019. "Residential water demand responds asymmetrically to rising and falling prices," Applied Economics, Taylor & Francis Journals, vol. 51(45), pages 4973-4981, September.
    7. D. Manouseli & B. Anderson & M. Nagarajan, 2018. "Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 433-447, January.
    8. Schleich, Joachim & Hillenbrand, Thomas, 2019. "Water demand responds asymmetrically to rising and falling prices," Working Papers "Sustainability and Innovation" S03/2019, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Lucia Cecchi & Enrico Conti & Letizia Ravagli, 2022. "The determinants of domestic water demand and the equity of tariffs: Empirical evidence from an Italian municipality," ECONOMIA PUBBLICA, FrancoAngeli Editore, vol. 2022(3), pages 373-395.
    10. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    11. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    12. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    13. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    14. Arbues, Fernando & Villanu´a, Inmaculada & Barberán Ortí, Ramón, 2010. "Household size and residential water demand: an empirical approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 1-20.
    15. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    16. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    17. Lee, Gi-Eu & Chou, Chang-Erh, 2020. "The Ex Ante Price Information Effect on Water Conservation: A Case Study of Taipei’s Water Tariff Adjustment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304253, Agricultural and Applied Economics Association.
    18. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    19. Nathan DeMaagd & Michael J. Roberts, 2020. "Estimating water demand using price differences of wastewater services," Working Papers 2020-1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:309-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.