IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i8d10.1007_s11269-020-02564-x.html
   My bibliography  Save this article

Techno-Economic Analysis of Residential Water Meters: A Practical Example

Author

Listed:
  • Víctor Manuel Fernández Pacheco

    (University of Oviedo)

  • Rodolfo Espina Valdés

    (University of Oviedo)

  • Enrique Bonet Gil

    (UPC-BarcelonaTech)

  • Antonio Navarro Manso

    (University of Oviedo)

  • Eduardo Álvarez Álvarez

    (University of Oviedo)

Abstract

As water is a scarce natural resource, one of the most crucial aspects influencing its management is the measurement of user consumptions. There are many studies which set out to analyze issues related to water meter accuracy from either a technical or economical point of view. This investigation proposes an approach that integrates both technical and economic studies to advise in the error evaluation and the units renewal decisions. The technical study includes a methodology for measuring the error produced at different flow rates and an analysis of the results obtained. In the economic study three methods – linked to different management strategies – have been outlined to make an adequate appraisal of the water meter replacement time. The procedure was applied to the water meter park of a medium-sized Spanish city. Results indicate that both measured volume and age contribute to the error evolution, and that there was no noticeable influence regarding either the transmission type or the brand. In the economic study, specific results related to the water replacement were obtained, and a sensibility analysis revealed the influence of the price of water, water meter cost and the cost of capital.

Suggested Citation

  • Víctor Manuel Fernández Pacheco & Rodolfo Espina Valdés & Enrique Bonet Gil & Antonio Navarro Manso & Eduardo Álvarez Álvarez, 2020. "Techno-Economic Analysis of Residential Water Meters: A Practical Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2471-2484, June.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02564-x
    DOI: 10.1007/s11269-020-02564-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02564-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02564-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Despina Manouseli & S. M. Kayaga & R. Kalawsky, 2019. "Evaluating the Effectiveness of Residential Water Efficiency Initiatives in England: Influencing Factors and Policy Implications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2219-2238, May.
    2. Alexandros Polycarpou & Theodoros Zachariadis, 2013. "An Econometric Analysis of Residential Water Demand in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 309-317, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iñigo Albaina & Iñigo Bidaguren & Urko Izquierdo & G. A. Esteban, 2023. "Influence of Various Accessories Upstream Large Water Meters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4693-4708, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    2. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    3. Dexter V. L. Hunt & Zeerak Shahab, 2021. "Sustainable Water Use Practices: Understanding and Awareness of Masters Level Students," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    4. Jana Hortová & Ladislav Kristoufek, 2014. "Price elasticity of household water demand in the Czech Republic," Working Papers IES 2014/38, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2014.
    5. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
    6. Wang, Jingjing & Chermak, Janie M., 2021. "Is less always more? Conservation, efficiency and water education programs," Ecological Economics, Elsevier, vol. 184(C).
    7. Elham Erfanian & Alan R. Collins, 2018. "Charges for Water and Access: What Explains the Differences Among West Virginian Municipalities?," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-27, October.
    8. Theodoros Zachariadis, 2016. "Proposal for a Green Tax Reform in Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 10(2), pages 127-139, December.
    9. Mengshan Lee & Berrin Tansel & Maribel Balbin, 2013. "Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2531-2540, May.
    10. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.
    11. Diana Fiorillo & Zoran Kapelan & Maria Xenochristou & Francesco De Paola & Maurizio Giugni, 2021. "Assessing the Impact of Climate Change on Future Water Demand using Weather Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1449-1462, March.
    12. Min Li & Kaisheng Long, 2019. "Direct or Spillover Effect: The Impact of Pure Technical and Scale Efficiencies of Water Use on Water Scarcity in China," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    13. Keivan Karimlou & Nemat Hassani & Abdollah Rashidi Mehrabadi & Mohammad Reza Nazari, 2019. "Calculating Price Elasticity of Water Demand Using Gene Expression Programming Based on Economic, Social and Meteorological Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4171-4188, September.
    14. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
    15. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    16. Andrés Ortega-Ballesteros & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2021. "Water Utilities Challenges: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    17. Elham Erfanian & Alan R. Collins, 2017. "Charges for Water and Access: What Explains the Differences in West Virginia Municipalities?," Working Papers Working Paper 2017-02, Regional Research Institute, West Virginia University.
    18. Wasi Ul Hassan Shah & Yuting Lu & Gang Hao & Hong Yan & Rizwana Yasmeen, 2022. "Impact of “Three Red Lines” Water Policy (2011) on Water Usage Efficiency, Production Technology Heterogeneity, and Determinant of Water Productivity Change in China," IJERPH, MDPI, vol. 19(24), pages 1-23, December.
    19. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    20. David Hoyos & Alaitz Artabe, 2017. "Regional Differences in the Price Elasticity of Residential Water Demand in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 847-865, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02564-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.