IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v11y2002i1d10.1007_bf02511444.html
   My bibliography  Save this article

Fuzzy K-means clustering models for triangular fuzzy time trajectories

Author

Listed:
  • Renato Coppi

    (Università degli Studi di Roma “La Sapienza”)

  • Pierpaolo D'Urso

    (Università degli Studi di Roma “La Sapienza”)

Abstract

We focus our attention on the classification of fuzzy time trajectories with triangular membership function, described by a given set of individuals. To this purpose, we adopt a fullyinformational approach, explicitly recognizing the informational nature shared by the ingredients of the classification procedure: the observed data (Empirical Information) and the classification model (Theoretical Information). In particular, by supposing that the informational paradigm has a fuzzy nature, we suggest three fuzzy clustering models allowing the classification of the triangular fuzzy time trajectories, based on the analysis of the cross sectional and/or longitudinal characteristics of their components (centers and spreads). Two applicative examples are illustrated.

Suggested Citation

  • Renato Coppi & Pierpaolo D'Urso, 2002. "Fuzzy K-means clustering models for triangular fuzzy time trajectories," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 21-40, February.
  • Handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511444
    DOI: 10.1007/BF02511444
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02511444
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02511444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    2. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    3. D'Urso, Pierpaolo & Disegna, Marta & Massari, Riccardo & Osti, Linda, 2016. "Fuzzy segmentation of postmodern tourists," Tourism Management, Elsevier, vol. 55(C), pages 297-308.
    4. Coppi, Renato & D'Urso, Pierpaolo, 2003. "Three-way fuzzy clustering models for LR fuzzy time trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 149-177, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    2. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    3. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    4. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    5. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    6. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    7. Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
    8. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    9. Pierpaolo D'Urso & Girish Prayag & Marta Disegna & Riccardo Massari, 2013. "Market Segmentation using Bagged Fuzzy C–Means (BFCM): Destination Image of Western Europe among Chinese Travellers," BEMPS - Bozen Economics & Management Paper Series BEMPS13, Faculty of Economics and Management at the Free University of Bozen.
    10. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    11. C Mar-Molinero & J Mingers, 2007. "An evaluation of the limitations of, and alternatives to, the Co-Plot methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 874-886, July.
    12. J. Vera & Rodrigo Macías & Willem Heiser, 2009. "A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 297-315, June.
    13. Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
    14. Roberto Rocci & Maurizio Vichi, 2005. "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 715-736, December.
    15. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    16. Coppi, Renato & D'Urso, Pierpaolo, 2003. "Three-way fuzzy clustering models for LR fuzzy time trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 149-177, June.
    17. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
    18. Joost Rosmalen & Patrick Groenen & Javier Trejos & William Castillo, 2009. "Optimization Strategies for Two-Mode Partitioning," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 155-181, August.
    19. D’Urso, Pierpaolo & Manca, Germana & Waters, Nigel & Girone, Stefania, 2019. "Visualizing regional clusters of Sardinia's EU supported agriculture: A Spatial Fuzzy Partitioning Around Medoids," Land Use Policy, Elsevier, vol. 83(C), pages 571-580.
    20. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2015. "Trimmed fuzzy clustering for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 21-40, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.