IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v43y2003i2p149-177.html
   My bibliography  Save this article

Three-way fuzzy clustering models for LR fuzzy time trajectories

Author

Listed:
  • Coppi, Renato
  • D'Urso, Pierpaolo

Abstract

No abstract is available for this item.

Suggested Citation

  • Coppi, Renato & D'Urso, Pierpaolo, 2003. "Three-way fuzzy clustering models for LR fuzzy time trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 149-177, June.
  • Handle: RePEc:eee:csdana:v:43:y:2003:i:2:p:149-177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00226-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    2. Richard Hathaway & James Bezdek, 1988. "Recent convergence results for the fuzzy c-means clustering algorithms," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 237-247, September.
    3. Renato Coppi & Pierpaolo D'Urso, 2002. "Fuzzy K-means clustering models for triangular fuzzy time trajectories," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 21-40, February.
    4. Pierpaolo D’Urso, 2000. "Dissimilarity measures for time trajectories," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 53-83, January.
    5. Katarina Košmelj & Vladimir Batagelj, 1990. "Cross-sectional approach for clustering time varying data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 99-109, March.
    6. Rousseeuw, P. J. & Kaufman, L. & Trauwaert, E., 1996. "Fuzzy clustering using scatter matrices," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 135-151, November.
    7. Michael Windham, 1985. "Numerical classification of proximity data with assignment measures," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 157-172, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D'Urso, Pierpaolo & Giordani, Paolo, 2006. "A weighted fuzzy c-means clustering model for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1496-1523, March.
    2. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    3. Vaishali Mirge & Kesari Verma & Shubhrata Gupta, 2017. "Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 547-561, September.
    4. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A possibilistic approach to latent structure analysis for symmetric fuzzy data," Economics & Statistics Discussion Papers esdp03014, University of Molise, Department of Economics.
    5. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    6. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    7. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    8. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    9. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.
    2. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    3. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    4. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    5. Michael Windham, 1987. "Parameter modification for clustering criteria," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 191-214, September.
    6. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    7. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    8. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    9. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    10. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    11. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    12. Berget, Ingunn & Mevik, Bjorn-Helge & Naes, Tormod, 2008. "New modifications and applications of fuzzy C-means methodology," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2403-2418, January.
    13. Dandan Xu & Yang Bian & Jian Rong & Jiachuan Wang & Baocai Yin, 2019. "Study on Clustering of Free-Floating Bike-Sharing Parking Time Series in Beijing Subway Stations," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    14. Kaur, Gurbinder & Dhar, Joydip & Guha, Rangan Kumar, 2016. "Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 69-80.
    15. Akira Yoshida & Yoshiharu Amano & Noboru Murata & Koichi Ito & Takumi Hasizume, 2013. "A Comparison of Optimal Operation of a Residential Fuel Cell Co-Generation System Using Clustered Demand Patterns Based on Kullback-Leibler Divergence," Energies, MDPI, vol. 6(1), pages 1-26, January.
    16. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    17. Pison, Greet & Struyf, Anja & Rousseeuw, Peter J., 1999. "Displaying a clustering with CLUSPLOT," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 381-392, June.
    18. Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
    19. Pierpaolo D'Urso & Girish Prayag & Marta Disegna & Riccardo Massari, 2013. "Market Segmentation using Bagged Fuzzy C–Means (BFCM): Destination Image of Western Europe among Chinese Travellers," BEMPS - Bozen Economics & Management Paper Series BEMPS13, Faculty of Economics and Management at the Free University of Bozen.
    20. Caterina Liberati & Paolo Mariani, 2012. "Banking customer satisfaction evaluation: a three-way factor perspective," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 323-336, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:43:y:2003:i:2:p:149-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.