IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v11y2019i1d10.1007_s12561-017-9205-0.html
   My bibliography  Save this article

NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data

Author

Listed:
  • Jeong Hwan Kook

    (Rice University)

  • Michele Guindani

    (UC Irvine)

  • Linlin Zhang

    (Schlumberger)

  • Marina Vannucci

    (Rice University)

Abstract

In this paper, we introduce NPBayes-fMRI, a user-friendly MATLAB GUI that implements a unified, probabilistically coherent non-parametric Bayesian framework for the analysis of task-related fMRI data from multi-subject experiments. The modeling approach is based on a spatio-temporal linear regression model that specifically accounts for the between-subjects heterogeneity in neuronal activity via a spatially informed multi-subject non-parametric variable selection prior. A characteristic feature of the approach is that it results in a clustering of the subjects into subgroups characterized by similar brain responses, while simultaneously producing group-level as well as subject-level activation maps. This is distinct from two-stage “group analysis” approaches traditionally considered in the fMRI literature, which separate the inference on the individual fMRI time courses from the inference at the population level. Here, we first describe the models and a Variational Bayes algorithm for posterior inference. Next, we introduce the toolbox and illustrate its features via an example.

Suggested Citation

  • Jeong Hwan Kook & Michele Guindani & Linlin Zhang & Marina Vannucci, 2019. "NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 3-21, April.
  • Handle: RePEc:spr:stabio:v:11:y:2019:i:1:d:10.1007_s12561-017-9205-0
    DOI: 10.1007/s12561-017-9205-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9205-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9205-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Michael & Fahrmeir, Ludwig, 2007. "Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 417-431, June.
    2. Wenguang Sun & Brian J. Reich & T. Tony Cai & Michele Guindani & Armin Schwartzman, 2015. "False discovery control in large-scale spatial multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 59-83, January.
    3. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Jaesik Jeong & Marina Vannucci & Kyungduk Ko, 2013. "A Wavelet-Based Bayesian Approach to Regression Models with Long Memory Errors and Its Application to fMRI Data," Biometrics, The International Biometric Society, vol. 69(1), pages 184-196, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    3. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    4. Michele Guindani & Wesley O. Johnson, 2018. "More nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 239-251, June.
    5. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    6. Selma Metzner & Gerd Wübbeler & Clemens Elster, 2019. "Approximate large-scale Bayesian spatial modeling with application to quantitative magnetic resonance imaging," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 333-355, September.
    7. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    8. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    9. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    10. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    11. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    12. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    13. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    14. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    16. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    17. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    18. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    19. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    20. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:11:y:2019:i:1:d:10.1007_s12561-017-9205-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.