IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302383.html
   My bibliography  Save this article

A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations

Author

Listed:
  • Brown, Paul T.
  • Joshi, Chaitanya
  • Joe, Stephen
  • Rue, Håvard

Abstract

Recently, it has been shown that the shape of a marginal distribution can be more accurately and efficiently captured using a set of low discrepancy sequence (LDS) points compared to standard grid points. This suggests that the use of LDS could improve the approximation to marginal posterior distributions produced by grid-based Bayesian methods such as the Integrated Nested Laplace Approximation (INLA). However, obtaining marginal posteriors using LDS is not straightforward. Two algorithms are proposed that can be incorporated into the INLA implementation to approximate marginal posterior distributions using LDS without sacrificing computational efficiency. Two examples are also presented to demonstrate that the proposed algorithms, when used inside INLA, can estimate marginal posteriors more accurately and efficiently than the grid approximation INLA employs. A distinct advantage is that these algorithms can also capture multimodal shapes that the current numerical integration free algorithm (NIFA) method used by INLA cannot.

Suggested Citation

  • Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302383
    DOI: 10.1016/j.csda.2020.107147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302383
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Finn Lindgren & Håvard Rue, 2008. "On the Second‐Order Random Walk Model for Irregular Locations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 691-700, December.
    4. repec:dau:papers:123456789/1906 is not listed on IDEAS
    5. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    6. Helene Roth & Stefan Lang & Helga Wagner, 2015. "Random intercept selection in structured additive regression models," Working Papers 2015-02, Faculty of Economics and Statistics, Universität Innsbruck.
    7. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    8. Ormerod, John T., 2011. "Grid based variational approximations," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 45-56, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    3. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    4. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    5. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    6. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    7. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    8. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    9. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    10. Jamie Roberman & Theophilus I. Emeto & Oyelola A. Adegboye, 2021. "Adverse Birth Outcomes Due to Exposure to Household Air Pollution from Unclean Cooking Fuel among Women of Reproductive Age in Nigeria," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    11. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    12. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    13. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    14. Muff, Stefanie & Ott, Manuela & Braun, Julia & Held, Leonhard, 2017. "Bayesian two-component measurement error modelling for survival analysis using INLA—A case study on cardiovascular disease mortality in Switzerland," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 177-193.
    15. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    16. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    17. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    18. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    19. Tyler A. Scott & Nicola Ulibarri & Ryan P. Scott, 2020. "Stakeholder involvement in collaborative regulatory processes: Using automated coding to track attendance and actions," Regulation & Governance, John Wiley & Sons, vol. 14(2), pages 219-237, April.
    20. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.