IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i3d10.1007_s43069-023-00238-z.html
   My bibliography  Save this article

Newton’s Method for Global Free Flight Trajectory Optimization

Author

Listed:
  • Ralf Borndörfer

    (Zuse Institute Berlin)

  • Fabian Danecker

    (Zuse Institute Berlin
    Zuse Institute Berlin)

  • Martin Weiser

    (Zuse Institute Berlin)

Abstract

Globally optimal free flight trajectory optimization can be achieved with a combination of discrete and continuous optimization. A key requirement is that Newton’s method for continuous optimization converges in a sufficiently large neighborhood around a minimizer. We show in this paper that, under certain assumptions, this is the case.

Suggested Citation

  • Ralf Borndörfer & Fabian Danecker & Martin Weiser, 2023. "Newton’s Method for Global Free Flight Trajectory Optimization," SN Operations Research Forum, Springer, vol. 4(3), pages 1-41, September.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:3:d:10.1007_s43069-023-00238-z
    DOI: 10.1007/s43069-023-00238-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00238-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00238-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    2. Bernardetta Addis & Andrea Cassioli & Marco Locatelli & Fabio Schoen, 2011. "A global optimization method for the design of space trajectories," Computational Optimization and Applications, Springer, vol. 48(3), pages 635-652, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    2. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    3. Locatelli, Marco & Schoen, Fabio, 2012. "Local search based heuristics for global optimization: Atomic clusters and beyond," European Journal of Operational Research, Elsevier, vol. 222(1), pages 1-9.
    4. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    5. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    6. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    7. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    8. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. F. Lampariello & G. Liuzzi, 2015. "A filling function method for unconstrained global optimization," Computational Optimization and Applications, Springer, vol. 61(3), pages 713-729, July.
    10. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    11. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    12. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    13. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. T. Gomes & J. Craveirinha & L. Jorge, 2010. "An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 394-414, April.
    15. Zhou, Bo & Eskandarian, Azim, 2006. "A Non-Deterministic Path Generation Algorithm for Traffic Networks," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208047, Transportation Research Forum.
    16. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    17. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    18. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    19. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    20. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:3:d:10.1007_s43069-023-00238-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.