IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43971-z.html
   My bibliography  Save this article

Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice

Author

Listed:
  • Alessandra Griffa

    (Lausanne University Hospital and University of Lausanne
    École Polytechnique Fédérale De Lausanne (EPFL)
    University of Geneva)

  • Mathieu Mach

    (École Polytechnique Fédérale De Lausanne (EPFL))

  • Julien Dedelley

    (École Polytechnique Fédérale De Lausanne (EPFL))

  • Daniel Gutierrez-Barragan

    (Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia)

  • Alessandro Gozzi

    (Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia)

  • Gilles Allali

    (Lausanne University Hospital and University of Lausanne)

  • Joanes Grandjean

    (Radboud University Medical Center
    Radboud University Medical Center)

  • Dimitri Ville

    (École Polytechnique Fédérale De Lausanne (EPFL)
    University of Geneva)

  • Enrico Amico

    (École Polytechnique Fédérale De Lausanne (EPFL)
    University of Geneva)

Abstract

Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain’s computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.

Suggested Citation

  • Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43971-z
    DOI: 10.1038/s41467-023-43971-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43971-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43971-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuhan Chen & Shengjun Wang & Claus C Hilgetag & Changsong Zhou, 2017. "Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-37, September.
    2. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    3. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    4. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    5. Andrea I. Luppi & Michael M. Craig & Ioannis Pappas & Paola Finoia & Guy B. Williams & Judith Allanson & John D. Pickard & Adrian M. Owen & Lorina Naci & David K. Menon & Emmanuel A. Stamatakis, 2019. "Consciousness-specific dynamic interactions of brain integration and functional diversity," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    6. Maria Giulia Preti & Dimitri Van De Ville, 2019. "Decoupling of brain function from structure reveals regional behavioral specialization in humans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. J. L. Vincent & G. H. Patel & M. D. Fox & A. Z. Snyder & J. T. Baker & D. C. Van Essen & J. M. Zempel & L. H. Snyder & M. Corbetta & M. E. Raichle, 2007. "Intrinsic functional architecture in the anaesthetized monkey brain," Nature, Nature, vol. 447(7140), pages 83-86, May.
    8. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Yuqi Liang & Junhao Liang & Chenchen Song & Mianxin Liu & Thomas Knöpfel & Pulin Gong & Changsong Zhou, 2023. "Complexity of cortical wave patterns of the wake mouse cortex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Stuart Oldham & Gareth Ball, 2023. "A phylogenetically-conserved axis of thalamocortical connectivity in the human brain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    8. Protachevicz, Paulo Ricardo & Borges, Fernando da Silva & Batista, Antonio Marcos & Baptista, Murilo da Silva & Caldas, Iberê Luiz & Macau, Elbert Einstein Nehrer & Lameu, Ewandson Luiz, 2023. "Plastic neural network with transmission delays promotes equivalence between function and structure," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Laura Biagi & Sofia Allegra Crespi & Michela Tosetti & Maria Concetta Morrone, 2015. "BOLD Response Selective to Flow-Motion in Very Young Infants," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-22, September.
    10. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    11. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    13. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    14. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    15. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    16. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    17. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Ashish Raj & Yu-hsien Chen, 2011. "The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    19. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    20. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43971-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.