IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v29y2015i3d10.1007_s10878-014-9766-5.html
   My bibliography  Save this article

Optimal shortest path set problem in undirected graphs

Author

Listed:
  • Huili Zhang

    (Xi’an Jiaotong University
    State Key Lab for Manufacturing Systems Engineering)

  • Yinfeng Xu

    (Xi’an Jiaotong University
    State Key Lab for Manufacturing Systems Engineering)

  • Xingang Wen

    (Xi’an Jiaotong University
    State Key Lab for Manufacturing Systems Engineering)

Abstract

This paper proposes the optimal shortest path set problem in an undirected graph $$G=(V,E)$$ G = ( V , E ) , in which some vehicles have to go from a source node $$s$$ s to a destination node $$t$$ t . However, at most $$k$$ k edges in the graph may be blocked during the traveling. The goal is to find a minimum collection of paths for the vehicles before they start off to assure the fastest arrival of at least one vehicle, no matter which $$l$$ l $$(0\le l\le k)$$ ( 0 ≤ l ≤ k ) edges are blocked. We consider two scenarios for this problem. In the first scenario with $$k=1$$ k = 1 , we propose the concept of common replacement path and design the Least-Overlap Algorithm to find the common replacement path. Based on this, an algorithm to compute the optimal shortest path set is presented and its time complexity is proved to be $$O(n^2)$$ O ( n 2 ) . In the second scenario with $$k>1$$ k > 1 , we consider the case where the blocked edges are consecutive ones on a shortest path from $$s$$ s to $$t$$ t and the vertices connecting two blocked edges are also blocked (i.e., routes passing through these vertices are not allowed), and an algorithm is presented to compute the optimal shortest path set in this scenario with time complexity $$O(mn+k^2n^2\log n)$$ O ( m n + k 2 n 2 log n ) .

Suggested Citation

  • Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
  • Handle: RePEc:spr:jcomop:v:29:y:2015:i:3:d:10.1007_s10878-014-9766-5
    DOI: 10.1007/s10878-014-9766-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-014-9766-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-014-9766-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yinfeng Xu & Maolin Hu & Bing Su & Binhai Zhu & Zhijun Zhu, 2009. "The canadian traveller problem and its competitive analysis," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 195-205, August.
    2. Peng Xiao & Yinfeng Xu & Bing Su, 2009. "Finding an anti-risk path between two nodes in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 235-246, April.
    3. Huili Zhang & Yinfeng Xu & Lan Qin, 2013. "The k-Canadian Travelers Problem with communication," Journal of Combinatorial Optimization, Springer, vol. 26(2), pages 251-265, August.
    4. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    5. Akgun, Vedat & Erkut, Erhan & Batta, Rajan, 2000. "On finding dissimilar paths," European Journal of Operational Research, Elsevier, vol. 121(2), pages 232-246, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao Zhang & Xiucui Guan & Panos M. Pardalos, 2021. "Maximum shortest path interdiction problem by upgrading edges on trees under weighted $$l_1$$ l 1 norm," Journal of Global Optimization, Springer, vol. 79(4), pages 959-987, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinfeng Xu & Huili Zhang, 2015. "How much the grid network and rescuers’ communication can improve the rescue efficiency in worst-case analysis," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1062-1076, November.
    2. Davood Shiri & F. Sibel Salman, 2017. "On the online multi-agent O–D k-Canadian Traveler Problem," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 453-461, August.
    3. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    4. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    5. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    6. Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
    7. TALARICO, Luca & SÖRENSEN, Kenneth & SPRINGAEL, Johan, 2013. "The k-dissimilar vehicle routing problem," Working Papers 2013029, University of Antwerp, Faculty of Business and Economics.
    8. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    9. Talarico, L. & Sörensen, K. & Springael, J., 2015. "The k-dissimilar vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 129-140.
    10. van der Zijpp, N.J. & Fiorenzo Catalano, S., 2005. "Path enumeration by finding the constrained K-shortest paths," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 545-563, July.
    11. Davood Shiri & F. Sibel Salman, 2019. "On the randomized online strategies for the k-Canadian traveler problem," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 254-267, July.
    12. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    13. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    14. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    15. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    16. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    17. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    18. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    19. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    20. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:29:y:2015:i:3:d:10.1007_s10878-014-9766-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.