IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v112y2017i3d10.1007_s11192-017-2449-0.html
   My bibliography  Save this article

Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses

Author

Listed:
  • Loet Leydesdorff

    (University of Amsterdam)

  • Dieter Franz Kogler

    (University College Dublin)

  • Bowen Yan

    (Singapore University of Technology and Design)

Abstract

The Cooperative Patent Classifications (CPC) recently developed cooperatively by the European and US Patent Offices provide a new basis for mapping patents and portfolio analysis. CPC replaces International Patent Classifications (IPC) of the World Intellectual Property Organization. In this study, we update our routines previously based on IPC for CPC and use the occasion for rethinking various parameter choices. The new maps are significantly different from the previous ones, although this may not always be obvious on visual inspection. We provide nested maps online and a routine for generating portfolio overlays on the maps; a new tool is provided for “difference maps” between patent portfolios of organizations or firms. This is illustrated by comparing the portfolios of patents granted to two competing firms—Novartis and MSD—in 2016. Furthermore, the data is organized for the purpose of statistical analysis.

Suggested Citation

  • Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
  • Handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2449-0
    DOI: 10.1007/s11192-017-2449-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2449-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2449-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Dieter F. Kogler & Jürgen Essletzbichler & David L. Rigby, 2017. "The evolution of specialization in the EU15 knowledge space," Journal of Economic Geography, Oxford University Press, vol. 17(2), pages 345-373.
    3. Scheu, M. & Veefkind, V. & Verbandt, Y. & Galan, E. Molina & Absalom, R. & Förster, W., 2006. "Mapping nanotechnology patents: The EPO approach," World Patent Information, Elsevier, vol. 28(3), pages 204-211, September.
    4. Archibugi, Daniele & Pianta, Mario, 1992. "Specialization and size of technological activities in industrial countries: The analysis of patent data," Research Policy, Elsevier, vol. 21(1), pages 79-93, February.
    5. Loet Leydesdorff & Lutz Bornmann & Caroline S. Wagner, 2017. "Generating clustered journal maps: an automated system for hierarchical classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1601-1614, March.
    6. repec:fth:harver:1473 is not listed on IDEAS
    7. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Daniele Rotolo & Ismael Rafols & Michael M. Hopkins & Loet Leydesdorff, 2017. "Strategic intelligence on emerging technologies: Scientometric overlay mapping," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(1), pages 214-233, January.
    9. Deborah Strumsky & José Lobo & Sander van der Leeuw, 2012. "Using patent technology codes to study technological change," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 21(3), pages 267-286, April.
    10. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    11. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    12. Jaffe, Adam B., 1989. "Characterizing the "technological position" of firms, with application to quantifying technological opportunity and research spillovers," Research Policy, Elsevier, vol. 18(2), pages 87-97, April.
    13. Ove Granstrand, 1999. "The Economics and Management of Intellectual Property," Books, Edward Elgar Publishing, number 1651.
    14. Marianna Makri & Michael A. Hitt & Peter J. Lane, 2010. "Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions," Strategic Management Journal, Wiley Blackwell, vol. 31(6), pages 602-628, June.
    15. Maisonobe, Marion & Eckert, Denis & Grossetti, Michel & Jégou, Laurent & Milard, Béatrice, 2016. "The world network of scientific collaborations between cities: domestic or international dynamics?," Journal of Informetrics, Elsevier, vol. 10(4), pages 1025-1036.
    16. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
    17. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    18. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    19. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence Of The Knowledge Base And The Firm'S Innovative Performance: Evidence From The U.S. Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 53(1), pages 123-142, March.
    20. Loet Leydesdorff & Floortje Alkemade & Gaston Heimeriks & Rinke Hoekstra, 2015. "Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 629-651, January.
    21. Ron Boschma & Pierre-Alexandre Balland & Dieter Franz Kogler, 2015. "Relatedness and technological change in cities: the rise and fall of technological knowledge in US metropolitan areas from 1981 to 2010," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 223-250.
    22. Loet Leydesdorff & Gaston Heimeriks & Daniele Rotolo, 2016. "Journal portfolio analysis for countries, cities, and organizations: Maps and comparisons," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 741-748, March.
    23. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    24. Quatraro, Francesco, 2010. "Knowledge coherence, variety and economic growth: Manufacturing evidence from Italian regions," Research Policy, Elsevier, vol. 39(10), pages 1289-1302, December.
    25. Maryann P. Feldman & Dieter F. Kogler & David L. Rigby, 2015. "rKnowledge: The Spatial Diffusion and Adoption of rDNA Methods," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 798-817, May.
    26. David J. Teece & Richard Rumelt & Giovanni Dosi & Sidney Winter, 2000. "Understanding Corporate Coherence: Theory and Evidence," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 9, pages 264-293, Edward Elgar Publishing.
    27. Lee,Keun, 2013. "Schumpeterian Analysis of Economic Catch-up," Cambridge Books, Cambridge University Press, number 9781107042681.
    28. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    29. Alkemade, Floortje & Heimeriks, Gaston & Schoen, Antoine & Villard, Lionel & Laurens, Patricia, 2015. "Tracking the internationalization of multinational corporate inventive activity: national and sectoral characteristics," Research Policy, Elsevier, vol. 44(9), pages 1763-1772.
    30. Koen Frenken & Frank Van Oort & Thijs Verburg, 2007. "Related Variety, Unrelated Variety and Regional Economic Growth," Regional Studies, Taylor & Francis Journals, vol. 41(5), pages 685-697.
    31. Dieter F. Kogler & David L. Rigby & Isaac Tucker, 2013. "Mapping Knowledge Space and Technological Relatedness in US Cities," European Planning Studies, Taylor & Francis Journals, vol. 21(9), pages 1374-1391, September.
    32. Bowen Yan & Jianxi Luo, 2017. "Measuring technological distance for patent mapping," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(2), pages 423-437, February.
    33. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
    34. Loet Leydesdorff & Liwen Vaughan, 2006. "Co‐occurrence matrices and their applications in information science: Extending ACA to the Web environment," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(12), pages 1616-1628, October.
    35. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence of the Knowledge Base and the Firms’ Innovative Performance. Evidence from the Bio-Pharmaceutical Industry," SciencePo Working papers Main hal-03417696, HAL.
    36. Bart Verspagen, 1997. "Measuring Intersectoral Technology Spillovers: Estimates from the European and US Patent Office Databases," Economic Systems Research, Taylor & Francis Journals, vol. 9(1), pages 47-65.
    37. Michel Grossetti & Denis Eckert & Yves Gingras & Laurent Jégou & Vincent Larivière & Béatrice Milard, 2014. "Cities and the geographical deconcentration of scientific activity: A multilevel analysis of publications (1987–2007)," Urban Studies, Urban Studies Journal Limited, vol. 51(10), pages 2219-2234, August.
    38. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo S Buarque & Ronald B Davies & Ryan M Hynes & Dieter F Kogler, 2020. "OK Computer: the creation and integration of AI in Europe," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 175-192.
    2. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    3. Zhang, Lin & Sun, Mengting & Peng, Yujie & Zhao, Wenjing & Chen, Lixin & Huang, Ying, 2022. "How public investment fuels innovation: Clues from government-subsidized USPTO patents," Journal of Informetrics, Elsevier, vol. 16(3).
    4. Lee, Changjun & Shin, Hyunha & Kim, Keungoui & Kogler, Dieter F., 2022. "The effects of regional capacity in knowledge recombination on production efficiency," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    5. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Loet Leydesdorff, 2018. "Diversity and interdisciplinarity: how can one distinguish and recombine disparity, variety, and balance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2113-2121, September.
    7. Nomaler, Önder & Verspagen, Bart, 2021. "Patent landscaping using 'green' technological trajectories," MERIT Working Papers 2021-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    9. José Lobo & Deborah Strumsky, 2019. "Sources of inventive novelty: two patent classification schemas, same story," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 19-37, July.
    10. Gerardo Tibaná-Herrera & María Teresa Fernández-Bajón & Félix Moya-Anegón, 2018. "Global analysis of the E-learning scientific domain: a declining category?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 675-685, February.
    11. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    12. Konstantina Sdravopoulou & Juan Manuel Muñoz González & María Dolores Hidalgo-Ariza, 2021. "Educating Adults with a Location-Based Augmented Reality Game: A Content Analysis Approach," Mathematics, MDPI, vol. 9(17), pages 1-16, August.
    13. Gangan Prathap, 2019. "Balance: a thermodynamic perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 247-255, April.
    14. Shu-Hao Chang & Chin-Yuan Fan, 2020. "Using Patent Technology Networks to Observe Neurocomputing Technology Hotspots and Development Trends," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    15. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    16. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    2. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2013. "Properties of knowledge base and firm survival: Evidence from a sample of French manufacturing firms," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1469-1483.
    3. Antonelli, Cristiano & Krafft, Jackie & Quatraro, Francesco, 2010. "Recombinant knowledge and growth: The case of ICTs," Structural Change and Economic Dynamics, Elsevier, vol. 21(1), pages 50-69, March.
    4. Melissa Haller & David L. Rigby, 2020. "The geographic evolution of optics technologies in the United States, 1976–2010," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1539-1559, December.
    5. Fusillo, Fabrizio, 2020. "Are Green Inventions really more complex? Evidence from European Patents," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 202002, University of Turin.
    6. Jackie Krafft & Francesco Quatraro & Pier Saviotti, 2014. "Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 587-622, July.
    7. Alessandra Colombelli & Francesco Quatraro, 2014. "The persistence of firms' knowledge base: a quantile approach to Italian data," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(7), pages 585-610, October.
    8. Ron Boschma & Pierre-Alexandre Balland & Dieter Franz Kogler, 2015. "Relatedness and technological change in cities: the rise and fall of technological knowledge in US metropolitan areas from 1981 to 2010," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 223-250.
    9. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    10. Lorenz, Steffi, 2015. "Diversität und Verbundenheit der unternehmerischen Wissensbasis: Ein neuartiger Messansatz mit Indikatoren aus Innovationsprojekten," Discussion Papers on Strategy and Innovation 15-01, Philipps-University Marburg, Department of Technology and Innovation Management (TIM).
    11. Krafft Jackie & Quatraro Francesco & Colombelli Alessandra, 2011. "High Growth Firms and Technological Knowledge: Do gazelles follow exploration or exploitation strategies?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201114, University of Turin.
    12. David Rigby, 2012. "The Geography of Knowledge Relatedness and Technological Diversification in U.S. Cities," Papers in Evolutionary Economic Geography (PEEG) 1218, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2012.
    13. Ron Boschma, 2017. "Relatedness as driver behind regional diversification: a research agenda," Papers in Evolutionary Economic Geography (PEEG) 1702, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2017.
    14. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    15. Maryann Feldman & Dieter Kogler & David Rigby, 2013. "rKnowledge: The Spatial Diffusion of rDNA Methods," Papers in Evolutionary Economic Geography (PEEG) 1311, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2013.
    16. Petralia, Sergio & Balland, Pierre-Alexandre & Morrison, Andrea, 2017. "Climbing the ladder of technological development," Research Policy, Elsevier, vol. 46(5), pages 956-969.
    17. Alessandra Colombelli & Gianluca Orsatti & Francesco Quatraro, 2021. "Local knowledge composition and the emergence of entrepreneurial activities across industries: evidence from Italian NUTS-3 regions," Small Business Economics, Springer, vol. 56(2), pages 613-635, February.
    18. Adam Whittle, 2017. "Local and Non-Local Knowledge Typologies: Technological Complexity in the Irish Knowledge Space," Papers in Evolutionary Economic Geography (PEEG) 1728, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2017.
    19. Francesco Quatraro, 2016. "Co-evolutionary Patterns in Regional Knowledge Bases and Economic Structure: Evidence from European Regions," Regional Studies, Taylor & Francis Journals, vol. 50(3), pages 513-539, March.
    20. Ron Boschma, 2018. "The geographical dimension of structural change," Papers in Evolutionary Economic Geography (PEEG) 1839, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2449-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.