IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v110y2017i3d10.1007_s11192-016-2224-7.html
   My bibliography  Save this article

Promoting diversity in science in Japan through mission-oriented research grants

Author

Listed:
  • Yoshi-aki Shimada

    (National Graduate Institute for Policy Studies (GRIPS)
    Japan Science and Technology Agency)

  • Naotoshi Tsukada

    (National Institute of Science and Technology Policy)

  • Jun Suzuki

    (National Graduate Institute for Policy Studies (GRIPS))

Abstract

In this study, we quantitatively compared the impact of mission-oriented research grants and curiosity-driven grants on the diversity of research subjects in Japan. First, we examined data for Japanese principal investigators receiving research funding between 2000 and 2010 in the field of nanotechnology and materials science, and identified groups of researchers whose publication performance was positively affected by the mission-oriented grant, CREST. We then compared the effect of CREST with that of the curiosity-driven grant, KAKENHI. The analysis uses both propensity score matching and difference in differences (PSM-DID) methodologies. Our results show that for participants in the CREST program there was an increase in number of publications of more than 10% per year, for periods of both 5 and 3 years after the funding ended, even though the observed average effect on citation was not statistically significant. Second, we evaluated the diversity of research subjects through analysis of the distribution of the classification codes applied to articles published between 1996 and 2013, utilizing the J-Global database, which has the finest granularity of category among existing bibliographic scientific publication databases. Research subjects were better conserved under the mission-oriented program than the curiosity-driven one, a finding contrary to predictions of conventional theory. We also found that under mission-oriented funding, there was an increase in diversity in the sense of marginal utility. These findings should be of use in the “diversity-aware” design of programs for the funding of fundamental research.

Suggested Citation

  • Yoshi-aki Shimada & Naotoshi Tsukada & Jun Suzuki, 2017. "Promoting diversity in science in Japan through mission-oriented research grants," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1415-1435, March.
  • Handle: RePEc:spr:scient:v:110:y:2017:i:3:d:10.1007_s11192-016-2224-7
    DOI: 10.1007/s11192-016-2224-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-2224-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-2224-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feldman, Maryann P. & Kogler, Dieter F., 2010. "Stylized Facts in the Geography of Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 381-410, Elsevier.
    2. Delgado, Mercedes & Porter, Michael E. & Stern, Scott, 2014. "Clusters, convergence, and economic performance," Research Policy, Elsevier, vol. 43(10), pages 1785-1799.
    3. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    4. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    5. Jacob, Brian A. & Lefgren, Lars, 2011. "The impact of research grant funding on scientific productivity," Journal of Public Economics, Elsevier, vol. 95(9), pages 1168-1177.
    6. Nathan Rosenberg, 2009. "Uncertainty and Technological Change," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 8, pages 153-172, World Scientific Publishing Co. Pte. Ltd..
    7. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    8. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    9. Mark Matthews & Francis Mcgowan, 1992. "Reconciling diversity and scale : some questions of method in the assessment of the costs and benefits of European intégration," Revue d'Économie Industrielle, Programme National Persée, vol. 59(1), pages 222-234.
    10. Cowan, Robin, 1991. "Tortoises and Hares: Choice among Technologies of Unknown Merit," Economic Journal, Royal Economic Society, vol. 101(407), pages 801-814, July.
    11. Arsev U. Aydinoglu & Suzie Allard & Chad Mitchell, 2016. "Measuring diversity in disciplinary collaboration in research teams: An ecological perspective," Research Evaluation, Oxford University Press, vol. 25(1), pages 18-36.
    12. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    13. Sotaro Shibayama, 2011. "Distribution of academic research funds: a case of Japanese national research grant," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 43-60, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Horta, 2023. "Emerging and Near Future Challenges of Higher Education in East Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 18(2), pages 171-191, July.
    2. Yoshi-aki Shimada & Jun Suzuki, 2017. "Promoting scientodiversity inspired by biodiversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1463-1479, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshi-aki Shimada & Jun Suzuki, 2017. "Promoting scientodiversity inspired by biodiversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1463-1479, December.
    2. Stirling, Andy, 2010. "Multicriteria diversity analysis: A novel heuristic framework for appraising energy portfolios," Energy Policy, Elsevier, vol. 38(4), pages 1622-1634, April.
    3. Wang, Chun-Chieh & Lin, Jia-Tian & Chen, Dar-Zen & Lo, Szu-Chia, 2023. "A New Look at National Diversity of Inventor Teams within Organizations," Journal of Informetrics, Elsevier, vol. 17(1).
    4. Mohammadi, Ali & Broström, Anders & Franzoni, Chiara, 2015. "Work Force Composition and Innovation: How Diversity in Employees’ Ethnical and Disciplinary Backgrounds Facilitates Knowledge Re-combination," Working Paper Series in Economics and Institutions of Innovation 413, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    5. Wang, Jian & Lee, You-Na & Walsh, John P., 2018. "Funding model and creativity in science: Competitive versus block funding and status contingency effects," Research Policy, Elsevier, vol. 47(6), pages 1070-1083.
    6. Sotaro Shibayama & Jian Wang, 2020. "Measuring originality in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 409-427, January.
    7. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    8. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    9. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    10. Diego Chavarro & Puay Tang & Ismael Rafols, 2014. "Interdisciplinarity and research on local issues: evidence from a developing country," Research Evaluation, Oxford University Press, vol. 23(3), pages 195-209.
    11. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    12. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    13. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    14. Hackett, Edward J. & Leahey, Erin & Parker, John N. & Rafols, Ismael & Hampton, Stephanie E. & Corte, Ugo & Chavarro, Diego & Drake, John M. & Penders, Bart & Sheble, Laura & Vermeulen, Niki & Vision,, 2021. "Do synthesis centers synthesize? A semantic analysis of topical diversity in research," Research Policy, Elsevier, vol. 50(1).
    15. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    16. Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
    17. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    18. Aboal, Diego & Tacsir, Ezequiel, 2016. "The impact of ex-ante subsidies to researchers on researcher's productivity: Evidence from a developing country," MERIT Working Papers 2016-019, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    19. Yury Dranev & Maxim Kotsemir & Boris Syomin, 2018. "Diversity of research publications: relation to agricultural productivity and possible implications for STI policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1565-1587, September.
    20. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:110:y:2017:i:3:d:10.1007_s11192-016-2224-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.