IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v54y2020i2d10.1007_s11135-019-00856-y.html
   My bibliography  Save this article

A network agent-based model of ethnocentrism and intergroup cooperation

Author

Listed:
  • Carlos M. Lemos

    (University of Agder)

  • Ross J. Gore

    (Old Dominion University)

  • Laurence Lessard-Phillips

    (University of Birmingham)

  • F. LeRon Shults

    (University of Agder
    Center for Modeling Social Systems at NORCE)

Abstract

We present a network agent-based model of ethnocentrism and intergroup cooperation in which agents from two groups (majority and minority) change their communality (feeling of group solidarity), cooperation strategy and social ties, depending on a barrier of “likeness” (affinity). Our purpose was to study the model’s capability for describing how the mechanisms of preexisting markers (or “tags”) that can work as cues for inducing in-group bias, imitation, and reaction to non-cooperating agents, lead to ethnocentrism or intergroup cooperation and influence the formation of the network of mixed ties between agents of different groups. We explored the model’s behavior via four experiments in which we studied the combined effects of “likeness,” relative size of the minority group, degree of connectivity of the social network, game difficulty (strength) and relative frequencies of strategy revision and structural adaptation. The parameters that have a stronger influence on the emerging dominant strategies and the formation of mixed ties in the social network are the group-tag barrier, the frequency with which agents react to adverse partners, and the game difficulty. The relative size of the minority group also plays a role in increasing the percentage of mixed ties in the social network. This is consistent with the intergroup ties being dependent on the “arena” of contact (with progressively stronger barriers from e.g. workmates to close relatives), and with measures that hinder intergroup contact also hindering mutual cooperation.

Suggested Citation

  • Carlos M. Lemos & Ross J. Gore & Laurence Lessard-Phillips & F. LeRon Shults, 2020. "A network agent-based model of ethnocentrism and intergroup cooperation," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 463-489, April.
  • Handle: RePEc:spr:qualqt:v:54:y:2020:i:2:d:10.1007_s11135-019-00856-y
    DOI: 10.1007/s11135-019-00856-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-019-00856-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-019-00856-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Ali M., 2007. "Group identity, social distance and intergroup bias," Journal of Economic Psychology, Elsevier, vol. 28(3), pages 324-337, June.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Thiele, Jan C, 2014. "R Marries NetLogo: Introduction to the RNetLogo Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i02).
    4. Fernando P Santos & Francisco C Santos & Jorge M Pacheco, 2016. "Social Norms of Cooperation in Small-Scale Societies," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Termos & Stefano Picascia & Neil Yorke-Smith, 2021. "Agent-Based Simulation of West Asian Urban Dynamics: Impact of Refugees," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(1), pages 1-2.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    2. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    3. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    6. Aslihan Akdeniz & Matthijs van Veelen, 2019. "The cancellation effect at the group level," Tinbergen Institute Discussion Papers 19-073/I, Tinbergen Institute.
    7. Shakun D. Mago & Anya C. Savikhin & Roman M. Sheremeta, 2012. "Facing Your Opponents: Social identification and information feedback in contests," Working Papers 12-15, Chapman University, Economic Science Institute.
    8. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    9. Dimitrova-Grajzl Valentina & Grajzl Peter & Guse A. Joseph & Smith J. Taylor, 2016. "Racial Group Affinity and Religious Giving: Evidence from Congregation-Level Panel Data," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 16(2), pages 689-725, April.
    10. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    12. Lessard, Sabin & Lahaie, Philippe, 2009. "Fixation probability with multiple alleles and projected average allelic effect on selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 266-277.
    13. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    14. Yasuhiro Shirata, 2020. "Evolution of a Collusive Price in a Networked Market," Dynamic Games and Applications, Springer, vol. 10(2), pages 528-554, June.
    15. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    16. Dittrich, Dennis A.V. & Büchner, Susanne & Kulesz, Micaela M., 2015. "Dynamic repeated random dictatorship and gender discrimination," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 55(C), pages 81-90.
    17. repec:cup:judgdm:v:15:y:2020:i:2:p:182-192 is not listed on IDEAS
    18. Katsuki Hayashi & Reiji Suzuki & Takaya Arita, 2016. "Coevolution of Cooperation and Layer Selection Strategy in Multiplex Networks," Games, MDPI, vol. 7(4), pages 1-13, November.
    19. Denton, Kaleda K. & Ram, Yoav & Feldman, Marcus W., 2022. "Conformity and content-biased cultural transmission in the evolution of altruism," Theoretical Population Biology, Elsevier, vol. 143(C), pages 52-61.
    20. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    21. Jan Feld & Nicolás Salamanca & Daniel S. Hamermesh, 2016. "Endophilia or Exophobia: Beyond Discrimination," Economic Journal, Royal Economic Society, vol. 126(594), pages 1503-1527, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:54:y:2020:i:2:d:10.1007_s11135-019-00856-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.