IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i3d10.1007_s11336-021-09811-z.html
   My bibliography  Save this article

Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models

Author

Listed:
  • Christian Gische

    (Humboldt University Berlin)

  • Manuel C. Voelkle

    (Humboldt University Berlin)

Abstract

Graph-based causal models are a flexible tool for causal inference from observational data. In this paper, we develop a comprehensive framework to define, identify, and estimate a broad class of causal quantities in linearly parametrized graph-based models. The proposed method extends the literature, which mainly focuses on causal effects on the mean level and the variance of an outcome variable. For example, we show how to compute the probability that an outcome variable realizes within a target range of values given an intervention, a causal quantity we refer to as the probability of treatment success. We link graph-based causal quantities defined via the do-operator to parameters of the model implied distribution of the observed variables using so-called causal effect functions. Based on these causal effect functions, we propose estimators for causal quantities and show that these estimators are consistent and converge at a rate of $$N^{-1/2}$$ N - 1 / 2 under standard assumptions. Thus, causal quantities can be estimated based on sample sizes that are typically available in the social and behavioral sciences. In case of maximum likelihood estimation, the estimators are asymptotically efficient. We illustrate the proposed method with an example based on empirical data, placing special emphasis on the difference between the interventional and conditional distribution.

Suggested Citation

  • Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09811-z
    DOI: 10.1007/s11336-021-09811-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09811-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09811-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    3. AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
    4. Thomas Richardson, 2003. "Markov Properties for Acyclic Directed Mixed Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 145-157, March.
    5. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    6. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    7. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    8. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    9. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    10. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    11. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    12. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    13. Kenneth Bollen, 1996. "An alternative two stage least squares (2SLS) estimator for latent variable equations," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 109-121, March.
    14. Magnus, J.R. & Neudecker, H., 1980. "The elimination matrix : Some lemmas and applications," Other publications TiSEM 0e3315d3-846c-4bc5-928e-f, Tilburg University, School of Economics and Management.
    15. Alain Hauser & Peter Bühlmann, 2015. "Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 291-318, January.
    16. Hausman, Jerry A & Taylor, William E, 1983. "Identification in Linear Simultaneous Equations Models with Covariance Restrictions: An Instrumental Variables Interpretation," Econometrica, Econometric Society, vol. 51(5), pages 1527-1549, September.
    17. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    18. Rosa L. Matzkin, 2015. "Estimation of Nonparametric Models With Simultaneity," Econometrica, Econometric Society, vol. 83, pages 1-66, January.
    19. Kenneth Bollen & Stanislav Kolenikov & Shawn Bauldry, 2014. "Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 20-50, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary F. Fisher & Kenneth A. Bollen, 2020. "An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 660-683, September.
    2. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    3. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    4. Shaobo Jin & Fan Yang-Wallentin & Kenneth A. Bollen, 2021. "A unified model-implied instrumental variable approach for structural equation modeling with mixed variables," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 564-594, June.
    5. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    6. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    7. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    8. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    9. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    11. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    12. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    13. Patrick Rehill & Nicholas Biddle, 2023. "Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability," Papers 2310.13240, arXiv.org, revised Mar 2024.
    14. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    15. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    16. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    17. Lukas Lanz & Roman Briker & Fabiola H. Gerpott, 2024. "Employees Adhere More to Unethical Instructions from Human Than AI Supervisors: Complementing Experimental Evidence with Machine Learning," Journal of Business Ethics, Springer, vol. 189(3), pages 625-646, January.
    18. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    19. Shanshan Hu & Yongxin Yuan, 2023. "Common Solutions to the Matrix Equations $$AX=B$$ A X = B and $$XC=D$$ X C = D on a Subspace," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 372-386, July.
    20. Federico Zincenko, 2023. "Nonparametric estimation of conditional densities by generalized random forests," Papers 2309.13251, arXiv.org, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09811-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.