IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v86y2021i4d10.1007_s11336-021-09773-2.html
   My bibliography  Save this article

A Guide for Sparse PCA: Model Comparison and Applications

Author

Listed:
  • Rosember Guerra-Urzola

    (Tilburg University)

  • Katrijn Van Deun

    (Tilburg University)

  • Juan C. Vera

    (Tilburg University)

  • Klaas Sijtsma

    (Tilburg University)

Abstract

PCA is a popular tool for exploring and summarizing multivariate data, especially those consisting of many variables. PCA, however, is often not simple to interpret, as the components are a linear combination of the variables. To address this issue, numerous methods have been proposed to sparsify the nonzero coefficients in the components, including rotation-thresholding methods and, more recently, PCA methods subject to sparsity inducing penalties or constraints. Here, we offer guidelines on how to choose among the different sparse PCA methods. Current literature misses clear guidance on the properties and performance of the different sparse PCA methods, often relying on the misconception that the equivalence of the formulations for ordinary PCA also holds for sparse PCA. To guide potential users of sparse PCA methods, we first discuss several popular sparse PCA methods in terms of where the sparseness is imposed on the loadings or on the weights, assumed model, and optimization criterion used to impose sparseness. Second, using an extensive simulation study, we assess each of these methods by means of performance measures such as squared relative error, misidentification rate, and percentage of explained variance for several data generating models and conditions for the population model. Finally, two examples using empirical data are considered.

Suggested Citation

  • Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
  • Handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09773-2
    DOI: 10.1007/s11336-021-09773-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09773-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09773-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    3. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    4. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    5. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    6. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    7. Robert Jennrich, 2006. "Rotation to Simple Loadings Using Component Loss Functions: The Oblique Case," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 173-191, March.
    8. Robert Jennrich, 2004. "Rotation to simple loadings using component loss functions: The orthogonal case," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 257-273, June.
    9. Nickolay Trendafilov & Kohei Adachi, 2015. "Sparse Versus Simple Structure Loadings," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 776-790, September.
    10. Henk Kiers, 1994. "Simplimax: Oblique rotation to an optimal target with simple structure," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 567-579, December.
    11. JOURNEE, Michel & NESTEROV, Yurii & RICHTARIK, Peter & SEPULCHRE, Rodolphe, 2010. "Generalized power method for sparse principal component analysis," LIDAM Reprints CORE 2232, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    13. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    14. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    15. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    16. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosember Guerra-Urzola & Niek C. Schipper & Anya Tonne & Klaas Sijtsma & Juan C. Vera & Katrijn Deun, 2023. "Sparsifying the least-squares approach to PCA: comparison of lasso and cardinality constraint," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 269-286, March.
    2. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    2. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    3. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    4. Rosember Guerra-Urzola & Niek C. Schipper & Anya Tonne & Klaas Sijtsma & Juan C. Vera & Katrijn Deun, 2023. "Sparsifying the least-squares approach to PCA: comparison of lasso and cardinality constraint," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 269-286, March.
    5. Nerea González-García & Ana Belén Nieto-Librero & Purificación Galindo-Villardón, 2023. "CenetBiplot: a new proposal of sparse and orthogonal biplots methods by means of elastic net CSVD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 5-19, March.
    6. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    7. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    8. Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
    9. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    10. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
    12. Mitzi Cubilla-Montilla & Ana Belén Nieto-Librero & M. Purificación Galindo-Villardón & Carlos A. Torres-Cubilla, 2021. "Sparse HJ Biplot: A New Methodology via Elastic Net," Mathematics, MDPI, vol. 9(11), pages 1-15, June.
    13. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    14. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    15. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    16. Kim, Nam-Hwui & Browne, Ryan P., 2021. "In the pursuit of sparseness: A new rank-preserving penalty for a finite mixture of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    17. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    18. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    19. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
    20. Ikemoto, Hiroki & Adachi, Kohei, 2016. "Sparse Tucker2 analysis of three-way data subject to a constrained number of zero elements in a core array," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09773-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.