IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i11p1298-d569636.html
   My bibliography  Save this article

Sparse HJ Biplot: A New Methodology via Elastic Net

Author

Listed:
  • Mitzi Cubilla-Montilla

    (Departamento de Estadística, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City 0824, Panama
    Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama City 0824, Panama)

  • Ana Belén Nieto-Librero

    (Department of Statistics, University of Salamanca, 37008 Salamanca, Spain
    Institute of Biomedical Research of Salamanca, 37008 Salamanca, Spain)

  • M. Purificación Galindo-Villardón

    (Department of Statistics, University of Salamanca, 37008 Salamanca, Spain
    Institute of Biomedical Research of Salamanca, 37008 Salamanca, Spain)

  • Carlos A. Torres-Cubilla

    (Department of Data Analytics, Banco General, Panama City 07096, Panama)

Abstract

The HJ biplot is a multivariate analysis technique that allows us to represent both individuals and variables in a space of reduced dimensions. To adapt this approach to massive datasets, it is necessary to implement new techniques that are capable of reducing the dimensionality of the data and improving interpretation. Because of this, we propose a modern approach to obtaining the HJ biplot called the elastic net HJ biplot, which applies the elastic net penalty to improve the interpretation of the results. It is a novel algorithm in the sense that it is the first attempt within the biplot family in which regularisation methods are used to obtain modified loadings to optimise the results. As a complement to the proposed method, and to give practical support to it, a package has been developed in the R language called SparseBiplots. This package fills a gap that exists in the context of the HJ biplot through penalized techniques since in addition to the elastic net, it also includes the ridge and lasso to obtain the HJ biplot. To complete the study, a practical comparison is made with the standard HJ biplot and the disjoint biplot, and some results common to these methods are analysed.

Suggested Citation

  • Mitzi Cubilla-Montilla & Ana Belén Nieto-Librero & M. Purificación Galindo-Villardón & Carlos A. Torres-Cubilla, 2021. "Sparse HJ Biplot: A New Methodology via Elastic Net," Mathematics, MDPI, vol. 9(11), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1298-:d:569636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/11/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/11/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessio Farcomeni, 2009. "An exact approach to sparse principal component analysis," Computational Statistics, Springer, vol. 24(4), pages 583-604, December.
    2. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    3. Cinthia Leonora Murillo‐Avalos & Mitzi Cubilla‐Montilla & Miguel Ángel Celestino Sánchez & Purificación Vicente‐Galindo, 2021. "What environmental social responsibility practices do large companies manage for sustainable development?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 153-168, January.
    4. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    5. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    6. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    7. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    8. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    9. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    10. Lavit, Christine & Escoufier, Yves & Sabatier, Robert & Traissac, Pierre, 1994. "The ACT (STATIS method)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 97-119, August.
    11. Qi, Xin & Luo, Ruiyan & Zhao, Hongyu, 2013. "Sparse principal component analysis by choice of norm," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 127-160.
    12. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nerea González-García & Ana Belén Nieto-Librero & Purificación Galindo-Villardón, 2023. "CenetBiplot: a new proposal of sparse and orthogonal biplots methods by means of elastic net CSVD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 5-19, March.
    2. Juan Carlos Laria & Line H. Clemmensen & Bjarne K. Ersbøll & David Delgado-Gómez, 2022. "A Generalized Linear Joint Trained Framework for Semi-Supervised Learning of Sparse Features," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    3. Wilson Rojas-Preciado & Mauricio Rojas-Campuzano & Purificación Galindo-Villardón & Omar Ruiz-Barzola, 2023. "Control Chart T2Qv for Statistical Control of Multivariate Processes with Qualitative Variables," Mathematics, MDPI, vol. 11(12), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nerea González-García & Ana Belén Nieto-Librero & Purificación Galindo-Villardón, 2023. "CenetBiplot: a new proposal of sparse and orthogonal biplots methods by means of elastic net CSVD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 5-19, March.
    2. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    3. Carmen C. Rodríguez-Martínez & Mitzi Cubilla-Montilla & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2021. "Sparse STATIS-Dual via Elastic Net," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    4. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    5. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    6. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    7. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    8. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    9. Davood Hajinezhad & Qingjiang Shi, 2018. "Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications," Journal of Global Optimization, Springer, vol. 70(1), pages 261-288, January.
    10. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    11. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    12. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    13. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Rosember Guerra-Urzola & Niek C. Schipper & Anya Tonne & Klaas Sijtsma & Juan C. Vera & Katrijn Deun, 2023. "Sparsifying the least-squares approach to PCA: comparison of lasso and cardinality constraint," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 269-286, March.
    15. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    16. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    17. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    18. Ali Habibnia & Esfandiar Maasoumi, 2021. "Forecasting in Big Data Environments: An Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 363-381, December.
    19. Mohamed Ibrahim Assoweh & Stéphane Chrétien & Brahim Tamadazte, 2020. "Spectrally Sparse Tensor Reconstruction in Optical Coherence Tomography Using Nuclear Norm Penalisation," Mathematics, MDPI, vol. 8(4), pages 1-31, April.
    20. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1298-:d:569636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.