IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.06126.html
   My bibliography  Save this paper

Unveil stock correlation via a new tensor-based decomposition method

Author

Listed:
  • Giuseppe Brandi
  • Ruggero Gramatica
  • Tiziana Di Matteo

Abstract

Portfolio allocation and risk management make use of correlation matrices and heavily rely on the choice of a proper correlation matrix to be used. In this regard, one important question is related to the choice of the proper sample period to be used to estimate a stable correlation matrix. This paper addresses this question and proposes a new methodology to estimate the correlation matrix which doesn't depend on the chosen sample period. This new methodology is based on tensor factorization techniques. In particular, combining and normalizing factor components, we build a correlation matrix which shows emerging structural dependency properties not affected by the sample period. To retrieve the factor components, we propose a new tensor decomposition (which we name Slice-Diagonal Tensor (SDT) factorization) and compare it to the two most used tensor decompositions, the Tucker and the PARAFAC. We have that the new factorization is more parsimonious than the Tucker decomposition and more flexible than the PARAFAC. Moreover, this methodology applied to both simulated and empirical data shows results which are robust to two non-parametric tests, namely Kruskal-Wallis and Kolmogorov-Smirnov tests. Since the resulting correlation matrix features stability and emerging structural dependency properties, it can be used as alternative to other correlation matrices type of measures, including the Person correlation.

Suggested Citation

  • Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
  • Handle: RePEc:arx:papers:1911.06126
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.06126
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    3. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," Papers 0707.3321, arXiv.org, revised Aug 2007.
    4. Gordon Tang, 1998. "The intertemporal stability of the covariance and correlation matrices of Hong Kong stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 359-365.
    5. Stephen Lee, 1998. "The Inter-Temporal Stability of Real Estate Returns: An Empirical Investigation," ERES eres1998_141, European Real Estate Society (ERES).
    6. Arie Kapteyn & Heinz Neudecker & Tom Wansbeek, 1986. "An approach ton-mode components analysis," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 269-275, June.
    7. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    8. James Engel & Marianne Gizycki, 1999. "Value at Risk: On the Stability and Forecasting of the Variance-covariance Matrix," RBA Research Discussion Papers rdp1999-04, Reserve Bank of Australia.
    9. Piet M.A. Eichholtz, 1996. "The Stability of the Covariances of International Property Share Returns," Journal of Real Estate Research, American Real Estate Society, vol. 11(2), pages 149-158.
    10. Andersson, Claus A. & Henrion, Rene, 1999. "A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorometric data," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 255-278, September.
    11. repec:arz:wpaper:eres1998-141 is not listed on IDEAS
    12. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    13. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 207-220, July.
    14. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    15. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    16. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    17. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    18. Cavanaugh, Joseph E., 1997. "Unifying the derivations for the Akaike and corrected Akaike information criteria," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 201-208, April.
    19. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    20. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Raymond Ka-Kay Pang & Oscar Granados & Harsh Chhajer & Erika Fille Legara, 2020. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Papers 2009.13390, arXiv.org, revised Feb 2021.
    3. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    4. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    5. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    6. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    7. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    8. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    9. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    10. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    11. Bilian Chen & Zhening Li & Shuzhong Zhang, 2015. "On optimal low rank Tucker approximation for tensors: the case for an adjustable core size," Journal of Global Optimization, Springer, vol. 62(4), pages 811-832, August.
    12. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    13. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    14. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    15. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    16. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    17. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    18. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    19. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    20. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.06126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.