Advanced Search
MyIDEAS: Login to save this article or follow this journal

Eigenvalues of large sample covariance matrices of spiked population models


Author Info

  • Baik, Jinho
  • Silverstein, Jack W.
Registered author(s):


    We consider a spiked population model, proposed by Johnstone, in which all the population eigenvalues are one except for a few fixed eigenvalues. The question is to determine how the sample eigenvalues depend on the non-unit population ones when both sample size and population size become large. This paper completely determines the almost sure limits of the sample eigenvalues in a spiked model for a general class of samples.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 6 (July)
    Pages: 1382-1408

    as in new window
    Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1382-1408

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Eigenvalues Sample covariance matrices Spiked population models Almost sure limits Non-null case;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    2. Collins, Benoît & Matsumoto, Sho & Saad, Nadia, 2014. "Integration of invariant matrices and moments of inverses of Ginibre and Wishart matrices," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 1-13.
    3. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    4. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "Correlation tests for high-dimensional data using extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 313-331.
    5. Romain Allez & Jean-Philippe Bouchaud, 2012. "Eigenvector dynamics: general theory and some applications," Papers 1203.6228,, revised Jul 2012.
    6. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    7. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    8. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    9. Maïda, M. & Najim, J. & Péché, S., 2007. "Large deviations for weighted empirical mean with outliers," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1373-1403, October.
    10. Mo, M.Y., 2010. "Universality in complex Wishart ensembles for general covariance matrices with 2 distinct eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1203-1225, May.
    11. Shabalin, Andrey A. & Nobel, Andrew B., 2013. "Reconstruction of a low-rank matrix in the presence of Gaussian noise," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 67-76.
    12. Bolla, Marianna & Friedl, Katalin & Krámli, András, 2010. "Singular value decomposition of large random matrices (for two-way classification of microarrays)," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 434-446, February.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1382-1408. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.