IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v72y2007i3p327-346.html
   My bibliography  Save this article

A Bayesian Semiparametric Latent Variable Model for Mixed Responses

Author

Listed:
  • Ludwig Fahrmeir
  • Alexander Raach

Abstract

No abstract is available for this item.

Suggested Citation

  • Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
  • Handle: RePEc:spr:psycho:v:72:y:2007:i:3:p:327-346
    DOI: 10.1007/s11336-007-9010-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-007-9010-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-007-9010-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    2. Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
    3. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011. "Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria," Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
    2. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    3. Ruixin Guo & Hongtu Zhu & Sy-Miin Chow & Joseph G. Ibrahim, 2012. "Bayesian Lasso for Semiparametric Structural Equation Models," Biometrics, The International Biometric Society, vol. 68(2), pages 567-577, June.
    4. Scott J. LaCombe, 2021. "Measuring Institutional Design in U.S. States," Social Science Quarterly, Southwestern Social Science Association, vol. 102(4), pages 1511-1533, July.
    5. Bayerstadler, Andreas & van Dijk, Linda & Winter, Fabian, 2016. "Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 244-252.
    6. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    7. Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
    8. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    9. Xiangjin Shen & Shiliang Li & Hiroki Tsurumi, 2013. "Comparison of Parametric and Semi-Parametric Binary Response Models," Departmental Working Papers 201308, Rutgers University, Department of Economics.
    10. Wimmer Valentin & Fenske Nora & Pyrka Patricia & Fahrmeir Ludwig, 2011. "Exploring Competition Performance in Decathlon Using Semi-Parametric Latent Variable Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-21, October.
    11. Ming Ouyang & Xinyuan Song, 2020. "Bayesian Local Influence of Generalized Failure Time Models with Latent Variables and Multivariate Censored Data," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 298-316, July.
    12. Xiangjin Shen & Iskander Karibzhanov & Hiroki Tsurumi & Shiliang Li, 2022. "Comparison of Bayesian and Sample Theory Parametric and Semiparametric Binary Response Models," Staff Working Papers 22-31, Bank of Canada.
    13. Kim, Gwangsu & Choi, Taeryon, 2019. "Asymptotic properties of nonparametric estimation and quantile regression in Bayesian structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 68-82.
    14. Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    2. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    3. Lee, Dae-Jin & Durbán, María, 2008. "Smooth-car mixed models for spatial count data," DES - Working Papers. Statistics and Econometrics. WS ws085820, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    5. Hui Luan & Daniel Fuller, 2022. "Urban form in Canada at a small-area level: Quantifying “compactness†and “sprawl†with bayesian multivariate spatial factor analysis," Environment and Planning B, , vol. 49(4), pages 1300-1313, May.
    6. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    7. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    8. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    9. Lawrence Kazembe, 2009. "Modelling individual fertility levels in Malawian women: a spatial semiparametric regression model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 237-255, July.
    10. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    11. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    12. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    13. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    15. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    16. Arpino, Bruno & Varriale, Roberta, 2009. "Assessing the quality of institutions’ rankings obtained through multilevel linear regression models," MPRA Paper 19873, University Library of Munich, Germany.
    17. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    18. Katalin Varga & Tibor Szendrei, 2024. "Non-stationary Financial Risk Factors and Macroeconomic Vulnerability for the UK," Papers 2404.01451, arXiv.org.
    19. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    20. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:72:y:2007:i:3:p:327-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.