IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i3d10.1007_s00291-021-00664-7.html
   My bibliography  Save this article

Integrated zone picking and vehicle routing operations with restricted intermediate storage

Author

Listed:
  • Manuel Ostermeier

    (Technical University of Munich)

  • Andreas Holzapfel

    (Geisenheim University)

  • Heinrich Kuhn

    (Catholic University Eichstätt-Ingolstadt)

  • Daniel Schubert

    (Catholic University Eichstätt-Ingolstadt)

Abstract

The competitiveness of a retailer is highly dependent on an efficient distribution system. This is especially true for the supply of stores from distribution centers. Stores ask for high flexibility when it comes to their supply. This means that fast order processing is essential. Order processing affects different subsystems at the distribution center: orders are picked in multiple picking zones, transferred to intermediate storage, and delivered via dedicated tours. These processing steps are highly interdependent. The schedule for picking needs to be synchronized with the routing decisions to ensure availability of orders at the DC’s loading docks when their associated tours are scheduled. Concurrently, intermediate storage represents a bottleneck as capacity for order storage is limited. The simultaneous planning of picking and routing operations with restricted intermediate storage is therefore relevant for retail practice but has not so far been considered within an integrated planning approach. Our work addresses this task and discusses an integrated zone picking and vehicle routing problem with restricted intermediate storage. We present a comprehensive model formulation and introduce a general variable neighborhood search for simultaneous consideration of the given planning stages. We also present two alternative sequential approaches that are motivated by the prevailing planning situation in industry. Numerical experiments and a case study show the need for an integrated planning approach to obtain practicable results. Further, we identify the impact of the main problem characteristics on overall planning and provide valuable insights for the application of these findings in industry.

Suggested Citation

  • Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:3:d:10.1007_s00291-021-00664-7
    DOI: 10.1007/s00291-021-00664-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00664-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00664-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Belle, Jan & Valckenaers, Paul & Cattrysse, Dirk, 2012. "Cross-docking: State of the art," Omega, Elsevier, vol. 40(6), pages 827-846.
    2. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    3. Archetti, Claudia & Feillet, Dominique & Speranza, M. Grazia, 2015. "Complexity of routing problems with release dates," European Journal of Operational Research, Elsevier, vol. 247(3), pages 797-803.
    4. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    5. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    6. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    7. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    8. Jérémie Gallien & Théophane Weber, 2010. "To Wave or Not to Wave? Order Release Policies for Warehouses with an Automated Sorter," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 642-662, September.
    9. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    10. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    11. Stef Moons, 2019. "Integrating order picking and vehicle routing decisions," 4OR, Springer, vol. 17(1), pages 109-110, March.
    12. S. Moons & K. Braekers & K. Ramaekers & A. Caris & Y. Arda, 2019. "The value of integrating order picking and vehicle routing decisions in a B2C e-commerce environment," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6405-6423, October.
    13. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    14. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    15. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    16. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    17. Stef Moons & Katrien Ramaekers & An Caris & Yasemin Arda, 2018. "Integration of order picking and vehicle routing in a B2C e-commerce context," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 813-843, December.
    18. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    19. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    20. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    21. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    22. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    23. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    24. Z Fu & R Eglese & L Y O Li, 2008. "A unified tabu search algorithm for vehicle routing problems with soft time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 663-673, May.
    25. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    26. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    27. Rijal, Arpan & Bijvank, Marco & de Koster, René, 2019. "Integrated scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service mode dock doors," European Journal of Operational Research, Elsevier, vol. 278(3), pages 752-771.
    28. Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich & Sternbeck, Michael G., 2016. "Delivery pattern and transportation planning in grocery retailing," European Journal of Operational Research, Elsevier, vol. 252(1), pages 54-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuhn, Heinrich & Schubert, Daniel & Holzapfel, Andreas, 2021. "Integrated order batching and vehicle routing operations in grocery retail – A General Adaptive Large Neighborhood Search algorithm," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1003-1021.
    2. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    3. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    4. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    5. Jamili, Negin & van den Berg, Pieter L. & de Koster, René, 2022. "Quantifying the impact of sharing resources in a collaborative warehouse," European Journal of Operational Research, Elsevier, vol. 302(2), pages 518-529.
    6. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    7. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Chevroton, Hugo & Kergosien, Yannick & Berghman, Lotte & Billaut, Jean-Charles, 2021. "Solving an integrated scheduling and routing problem with inventory, routing and penalty costs," European Journal of Operational Research, Elsevier, vol. 294(2), pages 571-589.
    11. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    12. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    13. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    14. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    15. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    16. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    17. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    18. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    19. José Brandão, 2017. "Iterated Local Search Algorithm for the Vehicle Routing Problem with Backhauls and Soft Time Windows," Working Papers REM 2017/10, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    20. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:3:d:10.1007_s00291-021-00664-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.