IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i3d10.1007_s10696-021-09425-8.html
   My bibliography  Save this article

The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders

Author

Listed:
  • Mustapha Haouassi

    (Université de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002
    Ecole Polytechnique de Montréal, CIRRELT)

  • Yannick Kergosien

    (Université de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002)

  • Jorge E. Mendoza

    (HEC Montréal, CIRRELT)

  • Louis-Martin Rousseau

    (Ecole Polytechnique de Montréal, CIRRELT)

Abstract

Fast delivery is one of the most popular services in e-commerce retail. It consists in shipping the items ordered on-line in short times. Customer orders in this segment come with deadlines, and respecting this latter is pivotal to ensure a high service quality. The most time-consuming process in the warehouse is order picking. It consists in regrouping orders into batches, assigning those batches to order pickers, sequencing the batches assigned to each order picker such that the orders deadlines are satisfied, and the picking time is minimized. To speed up the order picking operations, e-commerce warehouses implement new logistical practices. In this paper, we study the impact of splitting the orders (assigning the orderlines of an order to multiple pickers). We thus generalize the integrated orders batching, batch scheduling, and picker routing problem by allowing the orders splitting and propose a route first-schedule second heuristic to solve the problem. In the routing phase, the heuristic divides the orders into clusters and constructs the picking tours that retrieve the orderlines of each cluster using a split-based procedure. In the scheduling phase, the constructed tours are assigned to pickers such that the orders deadlines are satisfied using a constraint programming formulation. On a publicly available benchmark, we compare our results against a state-of-the-art iterated local search algorithm designed for the non-splitting version of the problem. Results show that splitting the customer orders using our algorithm reduces the picking time by 30% on average with a maximum reduction of 60%.

Suggested Citation

  • Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:3:d:10.1007_s10696-021-09425-8
    DOI: 10.1007/s10696-021-09425-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09425-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09425-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    2. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5337-5358, September.
    3. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    4. Boysen, Nils & Fedtke, Stefan & Weidinger, Felix, 2018. "Optimizing automated sorting in warehouses: The minimum order spread sequencing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 386-400.
    5. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    6. Cambazard, Hadrien & Catusse, Nicolas, 2018. "Fixed-parameter algorithms for rectilinear Steiner tree and rectilinear traveling salesman problem in the plane," European Journal of Operational Research, Elsevier, vol. 270(2), pages 419-429.
    7. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    8. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in the chevron warehouse," IISE Transactions, Taylor & Francis Journals, vol. 52(6), pages 665-687, June.
    9. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    10. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    11. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Boysen, Nils & Stephan, Konrad & Weidinger, Felix, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126187, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Ömer Öztürkoğlu & Kevin Gue & Russell Meller, 2012. "Optimal unit-load warehouse designs for single-command operations," IISE Transactions, Taylor & Francis Journals, vol. 44(6), pages 459-475.
    14. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    15. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    16. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    17. Masae, Makusee & Glock, C. H. & Vichitkunakorn, Panupong, 2020. "Optimal Order Picker Routing in a Conventional Warehouse with Two Blocks and Arbitrary Starting and Ending Points of a Tour," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118923, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    19. Boysen, Nils & Fedtke, Stefan & Weidinger, Felix, 2018. "Optimizing automated sorting in warehouses: The minimum order spread sequencing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126183, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    20. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    21. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    22. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    23. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kateryna Czerniachowska & Radosław Wichniarek & Krzysztof Żywicki, 2023. "A Model for an Order-Picking Problem with a One-Directional Conveyor and Buffer," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    4. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    5. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    6. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    7. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    8. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    9. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    10. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    12. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    13. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    14. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.
    15. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    16. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    17. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    18. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    19. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    20. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:3:d:10.1007_s10696-021-09425-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.