IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v16y2023i1d10.1007_s12063-022-00270-y.html
   My bibliography  Save this article

Structural transformation of fuzzy analytical hierarchy process: a relevant case for Covid-19

Author

Listed:
  • Surendra Kansara

    (Symbiosis Institute of Operations Management, A Constituent of Symbiosis International (Deemed University))

  • Sachin Modgil

    (International Management Institute)

  • Rupesh Kumar

    (University of Petroleum and Energy Studies)

Abstract

Covid-19 has posed difficult and challenging situations to the supply chains and companies are in fix how to choose the vendors under the uncertainty and complexity in recent years. Therefore, this research aims to incorporate structural transformation of the fuzzy analytical hierarchy process (FAHP) that is most appropriate for the uncertainty and disruption caused by Covid-19 like situation for ensuring supplies from vendors. The conventional approaches for vendor selection and evaluation use numerous multi-criteria decision-making tools that may not ensure reliability in a dynamic situation caused due to Covid-19. In this research, Fleiss’ Kappa method ensures the reliability of responses from eight respondents by using pairwise comparisons and assigning weights as envisaged in FAHP. In addition to determine the reliability of responses, a step under FAHP has been altered. This alteration is demonstrated in the vendor selection case in the Covid-19 scenario. The research suggests a plausible system required to address the uncertainties associated with Covid-19 to select and evaluate vendors by modifying a FAHP. The proposed altered mechanism can be incorporated in a similar type of other decision-making circumstances such as Covid-19, where the decision-makers are more than one, and the situation is very dynamic. The study is likely to facilitate information management, algorithmic development in decision making, or machine-driven decisions in uncertain conditions. The study offers managerial implications to purchase managers to accommodate and combine multiple factors and responses concerning the vendor performances for their evaluation, thus making a process more reliable.

Suggested Citation

  • Surendra Kansara & Sachin Modgil & Rupesh Kumar, 2023. "Structural transformation of fuzzy analytical hierarchy process: a relevant case for Covid-19," Operations Management Research, Springer, vol. 16(1), pages 450-465, March.
  • Handle: RePEc:spr:opmare:v:16:y:2023:i:1:d:10.1007_s12063-022-00270-y
    DOI: 10.1007/s12063-022-00270-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-022-00270-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-022-00270-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James S. Dyer, 1990. "Remarks on the Analytic Hierarchy Process," Management Science, INFORMS, vol. 36(3), pages 249-258, March.
    2. Weber, Charles A. & Current, John R. & Benton, W. C., 1991. "Vendor selection criteria and methods," European Journal of Operational Research, Elsevier, vol. 50(1), pages 2-18, January.
    3. Li, Gang & Fan, Huan & Lee, Peter K.C. & Cheng, T.C.E., 2015. "Joint supply chain risk management: An agency and collaboration perspective," International Journal of Production Economics, Elsevier, vol. 164(C), pages 83-94.
    4. Renata P. Brito & Priscila L. S. Miguel, 2017. "Power, Governance, and Value in Collaboration: Differences between Buyer and Supplier Perspectives," Journal of Supply Chain Management, Institute for Supply Management, vol. 53(2), pages 61-87, April.
    5. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2011. "A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 139-145, May.
    6. Noori-Daryan, Mahsa & Taleizadeh, Ata Allah & Jolai, Fariborz, 2019. "Analyzing pricing, promised delivery lead time, supplier-selection, and ordering decisions of a multi-national supply chain under uncertain environment," International Journal of Production Economics, Elsevier, vol. 209(C), pages 236-248.
    7. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    8. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    9. Schwenen, Sebastian, 2014. "Market design and supply security in imperfect power markets," Energy Economics, Elsevier, vol. 43(C), pages 256-263.
    10. Verma, Rohit & Pullman, Madeleine E., 1998. "An analysis of the supplier selection process," Omega, Elsevier, vol. 26(6), pages 739-750, December.
    11. DongBack Seo & Chee-Wee Tan & Gumala Warman, 2018. "Vendor satisfaction of E-government procurement systems in developing countries: an empirical research in Indonesia," Information Technology for Development, Taylor & Francis Journals, vol. 24(3), pages 554-581, July.
    12. Weck, M. & Klocke, F. & Schell, H. & Ruenauver, E., 1997. "Evaluating alternative production cycles using the extended fuzzy AHP method," European Journal of Operational Research, Elsevier, vol. 100(2), pages 351-366, July.
    13. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    14. Qian, Li, 2014. "Market-based supplier selection with price, delivery time, and service level dependent demand," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 697-706.
    15. Cheng, Ching-Hsue, 1997. "Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function," European Journal of Operational Research, Elsevier, vol. 96(2), pages 343-350, January.
    16. Sureeyatanapas, Panitas & Sriwattananusart, Kawinpob & Niyamosoth, Thanawath & Sessomboon, Weerapat & Arunyanart, Sirawadee, 2018. "Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method," Operations Research Perspectives, Elsevier, vol. 5(C), pages 69-79.
    17. Muhammad Irfan & Mingzheng Wang & Naeem Akhtar, 2019. "Impact of IT capabilities on supply chain capabilities and organizational agility: a dynamic capability view," Operations Management Research, Springer, vol. 12(3), pages 113-128, December.
    18. Olhager, Jan & Selldin, Erik, 2004. "Supply chain management survey of Swedish manufacturing firms," International Journal of Production Economics, Elsevier, vol. 89(3), pages 353-361, June.
    19. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    20. James S. Dyer, 1990. "A Clarification of "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 274-275, March.
    21. Heike Schulze & Lydia Bals & Jon Warwick, 2022. "A sustainable sourcing competence model for purchasing and supply management professionals," Operations Management Research, Springer, vol. 15(3), pages 1418-1444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Felix T.S. & Kumar, Niraj, 2007. "Global supplier development considering risk factors using fuzzy extended AHP-based approach," Omega, Elsevier, vol. 35(4), pages 417-431, August.
    2. Satish Tyagi, 2016. "An improved fuzzy-AHP (IFAHP) approach to compare SECI modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(15), pages 4520-4536, August.
    3. Fujun Hou, 2016. "Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    4. Wetzstein, Anton & Hartmann, Evi & Benton jr., W.C. & Hohenstein, Nils-Ole, 2016. "A systematic assessment of supplier selection literature – State-of-the-art and future scope," International Journal of Production Economics, Elsevier, vol. 182(C), pages 304-323.
    5. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    6. Łuczak, Aleksandra & Kozera, Agnieszka, 2021. "A model to assess the development priorities of local administrations through the hierarchy of strategic factors," Journal of Policy Modeling, Elsevier, vol. 43(2), pages 474-492.
    7. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    8. Suwignjo, P. & Bititci, U. S & Carrie, A. S, 2000. "Quantitative models for performance measurement system," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 231-241, March.
    9. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    10. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    11. Huang, Samuel H. & Keskar, Harshal, 2007. "Comprehensive and configurable metrics for supplier selection," International Journal of Production Economics, Elsevier, vol. 105(2), pages 510-523, February.
    12. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    13. Zachary F. Lansdowne, 1996. "Ordinal ranking methods for multicriterion decision making," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 613-627, August.
    14. Mubarik, Muhammad Shujaat & Kazmi, Syed Hasnain Alam & Zaman, Syed Imran, 2021. "Application of gray DEMATEL-ANP in green-strategic sourcing," Technology in Society, Elsevier, vol. 64(C).
    15. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    16. Devesh Kumar & Gunjan Soni & Rohit Joshi & Vipul Jain & Amrik Sohal, 2022. "Modelling supply chain viability during COVID-19 disruption: A case of an Indian automobile manufacturing supply chain," Operations Management Research, Springer, vol. 15(3), pages 1224-1240, December.
    17. Sandeep Singh & Jaimal Singh Khamba & Davinder Singh, 2023. "Study of energy-efficient attributes of overall equipment effectiveness in Indian sugar mill industries through analytical hierarchy process (AHP)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 374-384, March.
    18. Srinivas K. Reddy & Jay E. Aronson & Antonie Stam, 1998. "SPOT: Scheduling Programs Optimally for Television," Management Science, INFORMS, vol. 44(1), pages 83-102, January.
    19. Katie Steele & Yohay Carmel & Jean Cross & Chris Wilcox, 2009. "Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental Decision Making," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 26-33, January.
    20. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:16:y:2023:i:1:d:10.1007_s12063-022-00270-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.