IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v20y2020i2d10.1007_s12351-017-0364-z.html
   My bibliography  Save this article

Two-echelon three-indenture warranty distribution network: a hybrid branch and bound, Monte-Carlo approach

Author

Listed:
  • Amin Yazdekhasti

    (Yazd University)

  • Yahia Zare Mehrjardi

    (Yazd University)

Abstract

In today competitive world, providing warranty services must be responder and affordable. Hence, applying warranty distribution networks are often used to handle customers’ requests in time in addition to controlling the costs of supplying the after-sales services. Therefore, proper designing of warranty distribution networks has competitive advantage for its suppliers. In this paper, an integer nonlinear programming model for optimizing warranty distribution network of multi-indenture products under the opportunistic maintenance policy and from the third party point of view is provided. This network is two-echelon and deals with supporting one manufacturer’s customers. The third party aims to determine optimal level of spare parts for each product’s item in each repairing centers so that the overall items backorders during the warranty period is minimized. Moreover, the total costs of supplying spare parts and the opportunistic maintenance cost should be controlled. Due to complexity of the suggested model, an exact hybrid solution procedure is provided in which firstly random failures are simulated by Monte-Carlo simulation and then the optimal solutions are obtained using the branch and bound algorithm. To increase the search speed of the branch and bound approach, estimation of the upper bound is carried out via variable neighborhood search algorithm. As the study, the developed warranty distribution network will be applied for optimizing maintenance logistic of battery packs in electric vehicles. The results showed that the designed after-sale services network leads to considerable economic retrenchment in costs of the warranty period alongside minimizing the overall number of battery pack backorders.

Suggested Citation

  • Amin Yazdekhasti & Yahia Zare Mehrjardi, 2020. "Two-echelon three-indenture warranty distribution network: a hybrid branch and bound, Monte-Carlo approach," Operational Research, Springer, vol. 20(2), pages 1113-1158, June.
  • Handle: RePEc:spr:operea:v:20:y:2020:i:2:d:10.1007_s12351-017-0364-z
    DOI: 10.1007/s12351-017-0364-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-017-0364-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-017-0364-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfredsson, Patrik, 1997. "Optimization of multi-echelon repairable item inventory systems with simultaneous location of repair facilities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 584-595, June.
    2. Rothgang, Susanne & Baumhöfer, Thorsten & van Hoek, Hauke & Lange, Tobias & De Doncker, Rik W. & Sauer, Dirk Uwe, 2015. "Modular battery design for reliable, flexible and multi-technology energy storage systems," Applied Energy, Elsevier, vol. 137(C), pages 931-937.
    3. Pascual, Rodrigo & Santelices, Gabriel & Lüer-Villagra, Armin & Vera, Jorge & Cawley, Alejandro Mac, 2017. "Optimal repairable spare-parts procurement policy under total business volume discount environment," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 276-282.
    4. Chang Fang & Xinbao Liu & Jun Pei & Wenjuan Fan & Panos M. Pardalos, 2016. "Optimal production planning in a hybrid manufacturing and recovering system based on the internet of things with closed loop supply chains," Operational Research, Springer, vol. 16(3), pages 543-577, October.
    5. Yunzeng Wang & Morris A. Cohen & Yu-Sheng Zheng, 2000. "A Two-Echelon Repairable Inventory System with Stocking-Center-Dependent Depot Replenishment Lead Times," Management Science, INFORMS, vol. 46(11), pages 1441-1453, November.
    6. Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2013. "Multi-echelon, multi-indenture spare parts inventory control subject to system availability and budget constraints," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 95-101.
    7. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    8. Ghaddar, Bissan & Sakr, Nizar & Asiedu, Yaw, 2016. "Spare parts stocking analysis using genetic programming," European Journal of Operational Research, Elsevier, vol. 252(1), pages 136-144.
    9. Ashayeri, Jalal & Ma, Ning & Sotirov, Renata, 2015. "The redesign of a warranty distribution network with recovery processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 184-197.
    10. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2016. "Reliable product-service supply chains for repairable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 299-321.
    11. Craig C. Sherbrooke, 1968. "Metric: A Multi-Echelon Technique for Recoverable Item Control," Operations Research, INFORMS, vol. 16(1), pages 122-141, February.
    12. Basten, R.J.I. & van der Heijden, M.C. & Schutten, J.M.J., 2012. "Joint optimization of level of repair analysis and spare parts stocks," European Journal of Operational Research, Elsevier, vol. 222(3), pages 474-483.
    13. H Wong & G J van Houtum & D Cattrysse & D Van Oudheusden, 2005. "Simple, efficient heuristics for multi-item multi-location spare parts systems with lateral transshipments and waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1419-1430, December.
    14. John A. Muckstadt, 1973. "A Model for a Multi-Item, Multi-Echelon, Multi-Indenture Inventory System," Management Science, INFORMS, vol. 20(4-Part-I), pages 472-481, December.
    15. Craig C. Sherbrooke, 1986. "VARI-METRIC : Improved Approximations for Multi-Indenture, Multi-Echelon Availability Models," Operations Research, INFORMS, vol. 34(2), pages 311-319, April.
    16. Saman Hassanzadeh Amin & Guoqing Zhang, 2014. "Closed-loop supply chain network configuration by a multi-objective mathematical model," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 6(1), pages 1-15.
    17. Ismail Serdar Bakal & Serkan Ozpamukcu & Pelin Bayindir, 2014. "Two-Stage Versus Single-Stage Inventory Models with or without Repair Ability," Operations Research Proceedings, in: Stefan Helber & Michael Breitner & Daniel Rösch & Cornelia Schön & Johann-Matthias Graf von der Schu (ed.), Operations Research Proceedings 2012, edition 127, pages 555-560, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yazdekhasti, Amin & sharifzadeh, Shila & Ma, Junfeng, 2022. "A two-echelon two-indenture warranty distribution network development and optimization under batch-ordering inventory policy," International Journal of Production Economics, Elsevier, vol. 249(C).
    2. Ghaddar, Bissan & Sakr, Nizar & Asiedu, Yaw, 2016. "Spare parts stocking analysis using genetic programming," European Journal of Operational Research, Elsevier, vol. 252(1), pages 136-144.
    3. Izack Cohen & Morris A. Cohen & Elad Landau, 2017. "On sourcing and stocking policies in a two-echelon, multiple location, repairable parts supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 617-629, June.
    4. R. Basten & M. Heijden & J. Schutten & E. Kutanoglu, 2015. "An approximate approach for the joint problem of level of repair analysis and spare parts stocking," Annals of Operations Research, Springer, vol. 224(1), pages 121-145, January.
    5. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    6. Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2013. "Multi-echelon, multi-indenture spare parts inventory control subject to system availability and budget constraints," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 95-101.
    7. Patriarca, Riccardo & Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2016. "Inventory optimization for a customer airline in a Performance Based Contract," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 206-216.
    8. Fritzsche, R., 2012. "Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1065-1079.
    9. Nowicki, David R. & Randall, Wesley S. & Ramirez-Marquez, Jose Emmanuel, 2012. "Improving the computational efficiency of metric-based spares algorithms," European Journal of Operational Research, Elsevier, vol. 219(2), pages 324-334.
    10. Sheikh-Zadeh, Alireza & Rossetti, Manuel D., 2020. "Classification methods for problem size reduction in spare part provisioning," International Journal of Production Economics, Elsevier, vol. 219(C), pages 99-114.
    11. Wang, Naichao & Li, Mingyuan & Xiao, Boping & Ma, Lin, 2019. "Availability analysis of a general time distribution system with the consideration of maintenance and spares," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Mirzahosseinian, H. & Piplani, R., 2011. "A study of repairable parts inventory system operating under performance-based contract," European Journal of Operational Research, Elsevier, vol. 214(2), pages 256-261, October.
    13. Tsai, Shing Chih & Zheng, Ya-Xin, 2013. "A simulation optimization approach for a two-echelon inventory system with service level constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 364-374.
    14. Basten, R.J.I. & van der Heijden, M.C. & Schutten, J.M.J., 2012. "Joint optimization of level of repair analysis and spare parts stocks," European Journal of Operational Research, Elsevier, vol. 222(3), pages 474-483.
    15. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    16. Qin, Xuwei & Shao, Lusheng & Jiang, Zhong-Zhong, 2020. "Contract design for equipment after-sales service with business interruption insurance," European Journal of Operational Research, Elsevier, vol. 284(1), pages 176-187.
    17. Sheikh-Zadeh, Alireza & Rossetti, Manuel D. & Scott, Marc A., 2021. "Performance-based inventory classification methods for large-Scale multi-echelon replenishment systems," Omega, Elsevier, vol. 101(C).
    18. Driessen, M.A. & van Houtum, G.J. & Zijm, W.H.M. & Rustenburg, W.D., 2020. "Capacity assignment in repair shops with high material uncertainty," International Journal of Production Economics, Elsevier, vol. 221(C).
    19. García-Benito, Juan Carlos & Martín-Peña, María-Luz, 2021. "A redistribution model with minimum backorders of spare parts: A proposal for the defence sector," European Journal of Operational Research, Elsevier, vol. 291(1), pages 178-193.
    20. Kathryn E. Caggiano & John A. Muckstadt & James A. Rappold, 2006. "Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System," Manufacturing & Service Operations Management, INFORMS, vol. 8(3), pages 292-319, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:20:y:2020:i:2:d:10.1007_s12351-017-0364-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.