IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i2d10.1007_s11069-018-3449-y.html
   My bibliography  Save this article

A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping

Author

Listed:
  • Omid Ghorbanzadeh

    (University of Salzburg)

  • Hashem Rostamzadeh

    (University of Tabriz)

  • Thomas Blaschke

    (University of Salzburg)

  • Khalil Gholaminia

    (University of Tabriz)

  • Jagannath Aryal

    (University of Salzburg
    University of Tasmania)

Abstract

In this paper, we evaluate the predictive performance of an adaptive neuro-fuzzy inference system (ANFIS) using six different membership functions (MF). In combination with a geographic information system (GIS), ANFIS was used for land subsidence susceptibility mapping (LSSM) in the Marand plain, northwest Iran. This area is prone to droughts and low groundwater levels and subsequent land subsidence damages. Therefore, a land subsidence inventory database was created from an extensive field survey. Areas of land subsidence or areas showing initial signs of subsidence were used for training, while one-third of inventory database were reserved for testing and validation. The inventory database randomly divided into three different folds of the same size. One of the folds was chosen for testing and validation. Other two folds was used for training. This process repeated for every fold in the inventory dataset. Thereafter, land subsidence related factors, such as hydrological and topographical factors, were prepared as GIS layers. Areas susceptible to land subsidence were then analyzed using the ANFIS approach, and land subsidence susceptibility maps were created, whereby six different MFs were applied. Lastly, the results derived from each MF were validated with those areas of the land subsidence database that were not used for training. Receiver operating characteristics (ROC) curves were drawn for all LSSMs, and the areas under the curves were calculated. The ROC analyses for the six LSSMs yielded very high prediction values for two out of the six methods, namely the difference of DsigMF (0.958) and GaussMF (0.951). The integration of ANFIS and GIS generally led to high LSSM prediction accuracies. This study demonstrated that the choice of training dataset and the MF significantly affects the results.

Suggested Citation

  • Omid Ghorbanzadeh & Hashem Rostamzadeh & Thomas Blaschke & Khalil Gholaminia & Jagannath Aryal, 2018. "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 497-517, November.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:2:d:10.1007_s11069-018-3449-y
    DOI: 10.1007/s11069-018-3449-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3449-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3449-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    3. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
    4. Fausto Cavallaro, 2015. "A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of Biomass," Sustainability, MDPI, vol. 7(9), pages 1-13, September.
    5. Bakhtiar Feizizadeh & Stefan Kienberger, 2017. "Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(11), pages 2013-2035, November.
    6. Wiens, Trevor S. & Dale, Brenda C. & Boyce, Mark S. & Kershaw, G. Peter, 2008. "Three way k-fold cross-validation of resource selection functions," Ecological Modelling, Elsevier, vol. 212(3), pages 244-255.
    7. Arika Ligmann-Zielinska & Piotr Jankowski, 2012. "Impact of proximity-adjusted preferences on rank-order stability in geographical multicriteria decision analysis," Journal of Geographical Systems, Springer, vol. 14(2), pages 167-187, April.
    8. Hossein Basser & Shahaboddin Shamshirband & Hojat Karami & Dalibor Petković & Shatirah Akib & Afshin Jahangirzadeh, 2014. "Adaptive neuro-fuzzy selection of the optimal parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1393-1404, September.
    9. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    10. Hossein Basser & Shahaboddin Shamshirband & Dalibor Petković & Hojat Karami & Shatirah Akib & Afshin Jahangirzadeh, 2014. "Adaptive neuro-fuzzy prediction of the optimum parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1439-1449, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nixon N. Nduji & Christian N. Madu & Chukwuebuka C. Okafor & Martins U. Ezeoha, 2023. "A Geo-Hazard Risk Assessment Technique for Analyzing Impacts of Surface Subsidence within Onyeama Mine, South East Nigeria," Land, MDPI, vol. 12(3), pages 1-21, February.
    2. Rabia Tehseen & Muhammad Shoaib Farooq & Adnan Abid, 2020. "Earthquake Prediction Using Expert Systems: A Systematic Mapping Study," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    3. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    4. Majid Mohammady & Hamid Reza Pourghasemi & Mojtaba Amiri, 2019. "Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 951-971, November.
    5. Adel Ghasemi & Omid Bahmani & Samira Akhavan & Hamid Reza Pourghasemi, 2023. "Investigation of land-subsidence phenomenon and aquifer vulnerability using machine models and GIS technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1645-1671, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parviz Mohamadzadeh & Samereh Pourmoradian & Bakhtiar Feizizadeh & Ayyoob Sharifi & Mathias Vogdrup-Schmidt, 2020. "A GIS-Based Approach for Spatially-Explicit Sustainable Development Assessments in East Azerbaijan Province, Iran," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    2. Shamshirband, Shahaboddin & Petković, Dalibor & Anuar, Nor Badrul & Gani, Abdullah, 2014. "Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 270-276.
    3. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    4. B Eugene Smith & Mark K Johnston & Robert Lücking, 2016. "From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    5. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    6. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    8. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    9. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    10. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    11. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    12. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    13. C. J. Luis Pérez, 2020. "Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes," Mathematics, MDPI, vol. 8(6), pages 1-26, June.
    14. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    15. Joanna Jaroszewicz & Anna Majewska, 2021. "Group Spatial Preferences of Residential Locations—Simplified Method Based on Crowdsourced Spatial Data and MCDA," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    16. John, Monnie & Abdullah, Mohammad Omar & Hua, Tan Yie & Nolasco-Hipólito, Cirilo, 2021. "Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts," Renewable Energy, Elsevier, vol. 168(C), pages 815-828.
    17. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    18. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    19. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    20. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:2:d:10.1007_s11069-018-3449-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.