IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i2d10.1007_s11069-017-2887-2.html
   My bibliography  Save this article

Flash flood vulnerability assessment for small catchments with a material flow approach

Author

Listed:
  • Jijian Lian

    (Tianjin University)

  • Weichao Yang

    (Tianjin University)

  • Kui Xu

    (Tianjin University)

  • Chao Ma

    (Tianjin University)

Abstract

Flash flood often causes serious losses in small catchments of China. Nevertheless, the flash flood vulnerability assessment is relatively limited in China. This paper presented a material flow assessment framework to evaluate the flash flood vulnerability for small catchments in Wuzhishan County of Hainan province, China. The framework was developed into three parts: selection of typical villages and small catchments, calculation of exposure, sensitivity and adaptive capacity with material flow analysis, and multiple evaluation of vulnerability with the proposed material flow indices. In this framework, all material flows of exposure, sensitivity, and adaptive capacity were measured by water’s mass. Then, the relationship between the three elements of vulnerability was established through material flow indices. Results of the three elements of vulnerability and four material flow indices in each small catchment were exhibited via GIS. The evaluation results suggested that catchments with lower exposure, sensitivity, and adaptive capacity did not necessarily lead to lower vulnerability, as the inherent relationship among them might aggravate the vulnerability of catchments to flash flood. Some suggestions were put forward for the prevention of flash flood based on the vulnerability assessment. Finally, the advantages and disadvantages of the approach were discussed.

Suggested Citation

  • Jijian Lian & Weichao Yang & Kui Xu & Chao Ma, 2017. "Flash flood vulnerability assessment for small catchments with a material flow approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 699-719, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2887-2
    DOI: 10.1007/s11069-017-2887-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2887-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2887-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Tauhidur Rahman & Adel S. Aldosary & Kh Md Nahiduzzaman & Imran Reza, 2016. "Vulnerability of flash flooding in Riyadh, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1807-1830, December.
    2. Ismail Yucel, 2015. "Assessment of a flash flood event using different precipitation datasets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1889-1911, December.
    3. Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
    4. Binder, Claudia R. & Hofer, Christoph & Wiek, Arnim & Scholz, Roland W., 2004. "Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland," Ecological Economics, Elsevier, vol. 49(1), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    2. Xiaozhang Hu & Lixiang Song, 2018. "Hydrodynamic modeling of flash flood in mountain watersheds based on high-performance GPU computing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 567-586, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimmich, Christian & Fischbacher, Urs, 2016. "Behavioral determinants of supply chain integration and coexistence," Journal of Forest Economics, Elsevier, vol. 25(C), pages 55-77.
    2. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    3. Wiek, Arnim & Zemp, Stefan & Siegrist, Michael & Walter, Alexander I., 2007. "Sustainable governance of emerging technologies—Critical constellations in the agent network of nanotechnology," Technology in Society, Elsevier, vol. 29(4), pages 388-406.
    4. Mastronardi, Luigi & Cavallo, Aurora & Romagnoli, Luca, 2022. "A novel composite environmental fragility index to analyse Italian ecoregions’ vulnerability," Land Use Policy, Elsevier, vol. 122(C).
    5. Arnim Wiek & Kelli Larson, 2012. "Water, People, and Sustainability—A Systems Framework for Analyzing and Assessing Water Governance Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3153-3171, September.
    6. Mohd Yawar Ali Khan & Mohamed ElKashouty & Ali M. Subyani & Fuqiang Tian, 2022. "Flash Flood Assessment and Management for Sustainable Development Using Geospatial Technology and WMS Models in Abha City, Aseer Region, Saudi Arabia," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    7. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    8. Wurtenberger, Laura & Koellner, Thomas & Binder, Claudia R., 2006. "Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts," Ecological Economics, Elsevier, vol. 57(4), pages 679-697, June.
    9. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    10. Arzu Ozkaya & Zuhal Akyurek, 2019. "Evaluating the use of bias-corrected radar rainfall data in three flood events in Samsun, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 643-674, September.
    11. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    12. Ismail Fathy & Martina Zeleňáková & Hany F. Abd-Elhamid, 2020. "Highways protection from flood hazards, a case study: New Tama road, KSA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 479-496, August.
    13. Soha A. Mohamed, 2021. "Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2739-2763, September.
    14. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    15. Jean‐Yves Courtonne & Pierre‐Yves Longaretti & Denis Dupré, 2018. "Uncertainties of Domestic Road Freight Statistics: Insights for Regional Material Flow Studies," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1189-1201, October.
    16. Binder, Claudia R. & Mosler, Hans-Joachim, 2007. "Waste-resource flows of short-lived goods in households of Santiago de Cuba," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 265-283.
    17. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    18. Lang, Daniel J. & Binder, Claudia R. & Stauffacher, Michael & Ziegler, Christian & Schleiss, Konrad & Scholz, Roland W., 2006. "Material and money flows as a means for industry analysis of recycling schemes," Resources, Conservation & Recycling, Elsevier, vol. 49(2), pages 159-190.
    19. Takashi Hayashi & Daisuke Sawauchi & Daisuke Kunii, 2017. "Forest Maintenance Practices and Wood Energy Alternatives to Increase Uses of Forest Resources in a Local Initiative in Nishiwaga, Iwate, Japan," Sustainability, MDPI, vol. 9(11), pages 1-13, October.
    20. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2887-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.