IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i2d10.1007_s11069-019-03826-7.html
   My bibliography  Save this article

A review of risk analysis methods for natural disasters

Author

Listed:
  • Ruiling Sun

    (Nanjing University of Information Science and Technology
    Nanjing Research Institute of Ecological and Environmental Protection)

  • Ge Gao

    (National Climate Center)

  • Zaiwu Gong

    (Nanjing University of Information Science and Technology)

  • Jie Wu

    (Jiangsu Institute of Quality and Standardization)

Abstract

Between 1998 and 2017, 1.3 million people were killed and another 4.4 billion were left injured, homeless, displaced, or in need of emergency assistance due to climate-related and geophysical disasters. A risk analysis of natural disasters is helpful not only for disaster prevention and reduction, but also in reducing economic and social losses. Currently, there are many methods for natural disaster risk analysis. Based on the uncertainty, unfavorable and future characteristics of natural disaster risk, this paper summarizes the methods for disaster risk analysis based on the scope of application, research results, and focus; it also clarifies the advantages and disadvantages of various methods, as well as the scope of application, to provide a reference for selecting and optimizing methods for future disaster risk analysis.

Suggested Citation

  • Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03826-7
    DOI: 10.1007/s11069-019-03826-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03826-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03826-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    2. C. Velásquez & O. Cardona & M. Mora & L. Yamin & M. Carreño & A. Barbat, 2014. "Hybrid loss exceedance curve (HLEC) for disaster risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 455-479, June.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. Manish Kumar Goyal & Ashutosh Sharma, 2016. "A fuzzy c-means approach regionalization for analysis of meteorological drought homogeneous regions in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1831-1847, December.
    5. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    6. Minmin Huang & Shuanggen Jin, 2019. "A methodology for simple 2-D inundation analysis in urban area using SWMM and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 15-43, May.
    7. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    8. Ban-Jwu Shih & Che-Hao Chang, 2006. "Damage Survey of Water Supply Systems and Fragility Curve of PVC Water Pipelines in the Chi–Chi Taiwan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(1), pages 71-85, February.
    9. Dang Luo & Wenxin Mao & Huifang Sun, 2017. "Risk assessment and analysis of ice disaster in Ning–Meng reach of Yellow River based on a two-phased intelligent model under grey information environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 591-610, August.
    10. Muhammad Tauhidur Rahman & Adel S. Aldosary & Kh Md Nahiduzzaman & Imran Reza, 2016. "Vulnerability of flash flooding in Riyadh, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1807-1830, December.
    11. Enliang Guo & Jiquan Zhang & Xuehui Ren & Qi Zhang & Zhongyi Sun, 2014. "Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 947-965, November.
    12. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    13. E. Michel‐Kerjan & S. Hochrainer‐Stigler & H. Kunreuther & J. Linnerooth‐Bayer & R. Mechler & R. Muir‐Wood & N. Ranger & P. Vaziri & M. Young, 2013. "Catastrophe Risk Models for Evaluating Disaster Risk Reduction Investments in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 984-999, June.
    14. Sergii Skakun & Nataliia Kussul & Andrii Shelestov & Olga Kussul, 2014. "Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1521-1537, August.
    15. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    16. Cheng-Guo Wu & Yi-Ming Wei & Ju-Liang Jin & Qiang Huang & Yu-Liang Zhou & Li Liu, 2015. "Comprehensive evaluation of ice disaster risk of the Ningxia–Inner Mongolia Reach in the upper Yellow River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 179-197, February.
    17. Yaolong Liu & Zhenlou Chen & Jun Wang & Beibei Hu & Mingwu Ye & Shiyuan Xu, 2012. "Large-scale natural disaster risk scenario analysis: a case study of Wenzhou City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1287-1298, February.
    18. Rio Yonson & Ilan Noy & JC Gaillard, 2018. "The measurement of disaster risk: An example from tropical cyclones in the Philippines," Review of Development Economics, Wiley Blackwell, vol. 22(2), pages 736-765, May.
    19. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    20. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    21. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    22. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    23. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376, December.
    24. Lianfa Li & Jinfeng Wang & Hareton Leung & Chengsheng Jiang, 2010. "Assessment of Catastrophic Risk Using Bayesian Network Constructed from Domain Knowledge and Spatial Data," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1157-1175, July.
    25. Tsai, Chung-Hung & Chen, Cheng-Wu, 2011. "The establishment of a rapid natural disaster risk assessment model for the tourism industry," Tourism Management, Elsevier, vol. 32(1), pages 158-171.
    26. Tamura, Hiroyuki & Yamamoto, Kouji & Tomiyama, Shinji & Hatono, Itsuo, 2000. "Modeling and analysis of decision making problem for mitigating natural disaster risks," European Journal of Operational Research, Elsevier, vol. 122(2), pages 461-468, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Sun & Yufei Hou & Lanjiang Guo, 2021. "Big data revealed relationship between air pollution and manufacturing industry in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2533-2553, July.
    2. Shen, Guoqiang & Zhou, Long & Xue, Xianwu & Zhou, Yu, 2023. "The risk impacts of global natural and technological disasters," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Wentong Yang & Liyuan Zhang & Chunlei Liang, 2023. "Agricultural drought disaster risk assessment in Shandong Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1515-1534, September.
    4. Jincang Yang & Xueqin Dong & Sishi Liu, 2022. "Safety Risks of Primary and Secondary Schools in China: A Systematic Analysis Using AHP–EWM Method," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    5. Wenyan Pan & Mengwei Yan & Zhikun Zhao & Muhammad Awais Gulzar, 2022. "Flood Risk Assessment and Management in Urban Communities: The Case of Communities in Wuhan," Land, MDPI, vol. 12(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiling Sun & Zaiwu Gong & Weiwei Guo & Ashfaq Ahmad Shah & Jie Wu & Haiying Xu, 2022. "Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 475-500, May.
    2. Xinliang Xu & Daowei Sun & Tengjiao Guo, 2015. "A systemic analysis of typhoon risk across China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 461-477, May.
    3. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    4. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    5. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    6. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    7. Shutian Zhou & Guofang Zhai, 2023. "A Multi-Hazard Risk Assessment Framework for Urban Disaster Prevention Planning: A Case Study of Xiamen, China," Land, MDPI, vol. 12(10), pages 1-19, October.
    8. Anna Timonina & Stefan Hochrainer‐Stigler & Georg Pflug & Brenden Jongman & Rodrigo Rojas, 2015. "Structured Coupling of Probability Loss Distributions: Assessing Joint Flood Risk in Multiple River Basins," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2102-2119, November.
    9. Matthias Garschagen & Deepal Doshi & Jonathan Reith & Michael Hagenlocher, 2021. "Global patterns of disaster and climate risk—an analysis of the consistency of leading index-based assessments and their results," Climatic Change, Springer, vol. 169(1), pages 1-19, November.
    10. Jidong Wu & Mengqi Ye & Xu Wang & Elco Koks, 2019. "Building Asset Value Mapping in Support of Flood Risk Assessments: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    12. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    13. Umer Khayyam, 2020. "Floods: impacts on livelihood, economic status and poverty in the north-west region of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1033-1056, July.
    14. Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.
    15. Azhar Abbas & T. Amjath-Babu & Harald Kächele & Klaus Müller, 2015. "Non-structural flood risk mitigation under developing country conditions: an analysis on the determinants of willingness to pay for flood insurance in rural Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2119-2135, February.
    16. Wenxin Mao & Wenping Wang & Dang Luo & Huifang Sun, 2019. "Analyzing interactions between risk factors for ice disaster in Ning-Meng reach of Yellow River based on grey rough DEMATEL method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1025-1049, July.
    17. Ali Jamshidi & Shahrzad Faghih‐Roohi & Siamak Hajizadeh & Alfredo Núñez & Robert Babuska & Rolf Dollevoet & Zili Li & Bart De Schutter, 2017. "A Big Data Analysis Approach for Rail Failure Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1495-1507, August.
    18. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    19. Robin C. Van den Honert, 2016. "Improving Decision Making about Natural Disaster Mitigation Funding in Australia—A Framework," Resources, MDPI, vol. 5(3), pages 1-23, September.
    20. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03826-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.