IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i2d10.1007_s11069-016-2476-9.html
   My bibliography  Save this article

Micro-sized enterprises: vulnerability to flash floods

Author

Listed:
  • Konstantinos Karagiorgos

    (University of Natural Resources and Life Sciences
    Democritus University of Thrace)

  • Micha Heiser

    (University of Natural Resources and Life Sciences)

  • Thomas Thaler

    (University of Natural Resources and Life Sciences
    Democritus University of Thrace)

  • Johannes Hübl

    (University of Natural Resources and Life Sciences)

  • Sven Fuchs

    (University of Natural Resources and Life Sciences
    Democritus University of Thrace)

Abstract

In the framework of risk assessment for flash floods, vulnerability is a key concept to assess the susceptibility of elements at risk. Vulnerability is defined as expected degree of loss for an element at risk due to a hazard impact of a defined magnitude and frequency. Besides the increasing number of studies on flash floods available, in-depth information on vulnerability was missing so far. In order to close this gap, a vulnerability model was created for micro-sized enterprises exposed to flash floods in Greece. This model was based on a nonlinear regression approach using data from four different events. By means of bootstrapping, different functions were fitted to the data, and a modified Weibull distribution was found to represent the relationship between process magnitude and degree of loss best. Moreover, there is no need to distinguish between different business sectors when computing vulnerability for buildings exposed. The model can be applied on a local scale and may serve as a basis for flash flood risk management.

Suggested Citation

  • Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2476-9
    DOI: 10.1007/s11069-016-2476-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2476-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2476-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
    2. Reinhold Totschnig & Walter Sedlacek & Sven Fuchs, 2011. "A quantitative vulnerability function for fluvial sediment transport," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 681-703, August.
    3. Thomas Thaler & Thomas Hartmann, 2016. "Justice and flood risk management: reflecting on different approaches to distribute and allocate flood risk management in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 129-147, August.
    4. Michalis Diakakis & Spyridon Mavroulis & Giorgos Deligiannakis, 2012. "Floods in Greece, a statistical and spatial approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 485-500, June.
    5. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    6. N/A, 2010. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 214(1), pages 3-3, October.
    7. Pradeep Adhikari & Yang Hong & Kimberly Douglas & Dalia Kirschbaum & Jonathan Gourley & Robert Adler & G. Robert Brakenridge, 2010. "A digitized global flood inventory (1998–2008): compilation and preliminary results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 405-422, November.
    8. M. Jakob & D. Stein & M. Ulmi, 2012. "Vulnerability of buildings to debris flow impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 241-261, January.
    9. Sven Fuchs & Christian Kuhlicke & Volker Meyer, 2011. "Editorial for the special issue: vulnerability to natural hazards—the challenge of integration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 609-619, August.
    10. M. Papathoma-Köhle & M. Kappes & M. Keiler & T. Glade, 2011. "Physical vulnerability assessment for alpine hazards: state of the art and future needs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 645-680, August.
    11. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    12. Kalliopi Sapountzaki & Sylvia Wanczura & Gabriella Casertano & Stefan Greiving & Gavriil Xanthopoulos & Floriana Ferrara, 2011. "Disconnected policies and actors and the missing role of spatial planning throughout the risk management cycle," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1445-1474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soha A. Mohamed, 2021. "Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2739-2763, September.
    2. Mudassir Ali Khan & Zahiraniza Mustaffa & Indra Sati Hamonangan Harahap & Muhammad Bello Ibrahim & Mohamed Ezzat Al-Atroush, 2022. "Assessment of Physical Vulnerability and Uncertainties for Debris Flow Hazard: A Review concerning Climate Change," Land, MDPI, vol. 11(12), pages 1-22, December.
    3. Jijian Lian & Weichao Yang & Kui Xu & Chao Ma, 2017. "Flash flood vulnerability assessment for small catchments with a material flow approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 699-719, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    2. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
    3. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    4. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    5. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    6. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    7. C. Promper & T. Glade, 2016. "Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 111-127, May.
    8. M. Silva & S. Pereira, 2014. "Assessment of physical vulnerability and potential losses of buildings due to shallow slides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1029-1050, June.
    9. Sven Fuchs & Jörn Birkmann & Thomas Glade, 2012. "Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1969-1975, December.
    10. Mudassir Ali Khan & Zahiraniza Mustaffa & Indra Sati Hamonangan Harahap & Muhammad Bello Ibrahim & Mohamed Ezzat Al-Atroush, 2022. "Assessment of Physical Vulnerability and Uncertainties for Debris Flow Hazard: A Review concerning Climate Change," Land, MDPI, vol. 11(12), pages 1-22, December.
    11. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    12. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
    13. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    14. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    15. Thomas Thaler, 2021. "Just retreat—how different countries deal with it: examples from Austria and England," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 412-419, September.
    16. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    17. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    18. Hualin Cheng & Zhiyi Chen & Yu Huang, 2022. "Quantitative physical model of vulnerability of buildings to urban flow slides in construction solid waste landfills: a case study of the 2015 Shenzhen flow slide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1567-1587, June.
    19. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    20. Otar Varazanashvili & Nino Tsereteli & Avtandil Amiranashvili & Emil Tsereteli & Elizbar Elizbarashvili & Jemal Dolidze & Lado Qaldani & Manana Saluqvadze & Shota Adamia & Nika Arevadze & Aleksandre G, 2012. "Vulnerability, hazards and multiple risk assessment for Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2021-2056, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2476-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.