IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p1029-1050.html
   My bibliography  Save this article

Assessment of physical vulnerability and potential losses of buildings due to shallow slides

Author

Listed:
  • M. Silva
  • S. Pereira

Abstract

Physical vulnerability (PV) of buildings and associated potential losses (PLs) due to the occurrence of shallow slides are semi-quantitatively assessed at the regional scale in a municipality located in the North of Portugal. This work has four main purposes: (1) to identify and characterize the built environment exposed to shallow slides in the study area; (2) to assess the PV of each building type taking into account the building resistance (BR) and the landslide magnitude (LM); (3) to evaluate the economic value (EV) of each single exposed building using cadastral and market values; and (4) to estimate PLs on buildings due to landslide activity. The analysis is made for each single building of the study area, and this is an innovative contribution of this work. The semi-quantitative methodology to assess PV of buildings exposed to shallow translational slides combines the LM and the BR, which is empirically obtained weighting a set of parameters related to building characteristics. The quantification of the EV of buildings was carried out using an adaptation of the calculation formula used by the Portuguese Tax Services to determine the taxable value of buildings in Portugal. PLs result from the product between PV of the exposed buildings and their EV in euros. The overlapping of PLs of buildings with an available landslide susceptibility map, although does not provides any quantified risk analysis, provides valuable information to be used by spatial planning and civil protection stakeholders. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • M. Silva & S. Pereira, 2014. "Assessment of physical vulnerability and potential losses of buildings due to shallow slides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1029-1050, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:1029-1050
    DOI: 10.1007/s11069-014-1052-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1052-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1052-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    2. M. Papathoma-Köhle & M. Kappes & M. Keiler & T. Glade, 2011. "Physical vulnerability assessment for alpine hazards: state of the art and future needs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 645-680, August.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    4. Marion Michael-Leiba & Fred Baynes & Greg Scott & Ken Granger, 2003. "Regional landslide risk to the Cairns community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 233-249, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    2. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    3. Aditi Singh & D. P. Kanungo & Shilpa Pal, 2019. "Physical vulnerability assessment of buildings exposed to landslides in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 753-790, March.
    4. Weihua Zhu & Kai Liu & Ming Wang & Sadhana Nirandjan & Elco E. Koks, 2023. "Improved assessment of rainfall-induced railway infrastructure risk in China using empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1525-1548, January.
    5. Ellen Felizardo Batista & Larissa De Brum Passini & Alessander Christopher Morales Kormann, 2019. "Methodologies of Economic Measurement and Vulnerability Assessment for Application in Landslide Risk Analysis in a Highway Domain Strip: A Case Study in the Serra Pelada Region (Brazil)," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    6. Ho Gul Kim & Dong Kun Lee & Huicheul Jung & Sung-Ho Kil & Jin Han Park & Chan Park & Riwako Tanaka & Changwan Seo & Ho Kim & Wooseok Kong & Kyusik Oh & Jinyong Choi & Young-Ju Oh & Gangseok Hwang & Ch, 2016. "Finding key vulnerable areas by a climate change vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1683-1732, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    2. Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
    3. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    4. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    5. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    6. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    7. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    8. Otar Varazanashvili & Nino Tsereteli & Avtandil Amiranashvili & Emil Tsereteli & Elizbar Elizbarashvili & Jemal Dolidze & Lado Qaldani & Manana Saluqvadze & Shota Adamia & Nika Arevadze & Aleksandre G, 2012. "Vulnerability, hazards and multiple risk assessment for Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2021-2056, December.
    9. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
    10. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    11. C. Promper & T. Glade, 2016. "Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 111-127, May.
    12. Juan Francisco Sortino Barrionuevo & Hugo Castro Noblejas & Francisco José Cantarero Prados, 2022. "Vulnerability to Flood Risk: A Methodological Proposal for Assessing the Isolation of the Population," Land, MDPI, vol. 11(2), pages 1-24, February.
    13. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
    14. Gabi Hufschmidt, 2011. "A comparative analysis of several vulnerability concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 621-643, August.
    15. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    16. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    17. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    18. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    19. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    20. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:1029-1050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.