IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i1d10.1007_s11069-015-2085-z.html
   My bibliography  Save this article

Estimation of property loss and business interruption loss caused by storm surge inundation due to climate change: a case of Typhoon Vera revisit

Author

Listed:
  • Xinyu Jiang

    (Kyoto University)

  • Nobuhito Mori

    (Kyoto University)

  • Hirokazu Tatano

    (Kyoto University)

  • Lijiao Yang

    (Kyoto University)

  • Yoko Shibutani

    (Kyoto University)

Abstract

This paper estimates property loss and business interruption loss under scenarios of storm surge inundation to explore the economic impact of climate change on Ise Bay, Japan. Scenarios-based analyses are conducted with respect to Typhoon Vera, which caused the most severe storm surge in the recorded history of Japan in 1959. Four different hazard scenarios are chosen from a series of typhoon storm surge inundation simulations: Typhoon Vera’s landfall with respect to the condition of the past seawall; Typhoon Vera’s landfall with respect to the condition of the current seawall; intensifying Typhoon Vera, but retaining its original tracks; and intensifying Typhoon Vera, but choosing the worst tracks from various possible typhoon tracks. Our economic loss estimation takes advantage of fine geographical scale census and economic census data that enable us to understand the spatial distribution of property loss and business interruption loss as well as identify the most potentially affected areas and business sectors on a sub-city scale. By comparing the property loss and business interruption loss caused by different hazard scenarios, the effect of different seawalls is evaluated and the economic impact of future climate change is estimated. The results indicate that although the current seawall can considerably reduce the scale of losses, climate change can cause Ise Bay to experience more serious storm surge inundation. Moreover, the resulting economic losses would increase significantly owing to a combination of climate change and the worst track scenario. It is, therefore, necessary to consider more countermeasures to adapt to climate change in this area.

Suggested Citation

  • Xinyu Jiang & Nobuhito Mori & Hirokazu Tatano & Lijiao Yang & Yoko Shibutani, 2016. "Estimation of property loss and business interruption loss caused by storm surge inundation due to climate change: a case of Typhoon Vera revisit," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 35-49, November.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-015-2085-z
    DOI: 10.1007/s11069-015-2085-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2085-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2085-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    2. Norihiko Yamano & Yoshio Kajitani & Yoshiharu Shumuta, 2007. "Modeling the Regional Economic Loss of Natural Disasters: The Search for Economic Hotspots," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 163-181.
    3. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(2), pages 135-160, February.
    4. Hirokazu Tatano & Satoshi Tsuchiya, 2008. "A framework for economic loss estimation due to seismic transportation network disruption: a spatial computable general equilibrium approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(2), pages 253-265, February.
    5. Alistair Hunt & Paul Watkiss, 2011. "Climate change impacts and adaptation in cities: a review of the literature," Climatic Change, Springer, vol. 104(1), pages 13-49, January.
    6. Kousky, Carolyn, 2012. "Informing Climate Adaptation: A Review of the Economic Costs of Natural Disasters, Their Determinants, and Risk Reduction Options," RFF Working Paper Series dp-12-28, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Jiang & Nobuhito Mori & Hirokazu Tatano & Lijiao Yang, 2019. "Simulation-Based Exceedance Probability Curves to Assess the Economic Impact of Storm Surge Inundations due to Climate Change: A Case Study in Ise Bay, Japan," Sustainability, MDPI, vol. 11(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    3. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    4. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Reinhard Mechler & Stefan Hochrainer & Asbjørn Aaheim & Håkon Salen & Anita Wreford, 2010. "Modelling economic impacts and adaptation to extreme events: Insights from European case studies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 737-762, October.
    7. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    8. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    9. Samuel Fankhauser & Thomas K.J. McDermott, 2013. "Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?," GRI Working Papers 134, Grantham Research Institute on Climate Change and the Environment.
    10. Christoph Hambel & Holger Kraft & Eduardo Schwartz, 2015. "Optimal Carbon Abatement in a Stochastic Equilibrium Model with Climate Change," NBER Working Papers 21044, National Bureau of Economic Research, Inc.
    11. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    12. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    13. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    14. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.
    15. Ng, Pin & Zhao, Xiaobing, 2011. "No matter how it is measured, income declines with global warming," Ecological Economics, Elsevier, vol. 70(5), pages 963-970, March.
    16. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    17. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    18. Rick Van der Ploeg & Armon Rezai, 2015. "Intergenerational Inequality Aversion, Growth and the Role of Damages: Occam's rule for the global tax," Economics Series Working Papers OxCarre Research Paper 15, University of Oxford, Department of Economics.
    19. Robert S. Pindyck, 2011. "Modeling the Impact of Warming in Climate Change Economics," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 47-71, National Bureau of Economic Research, Inc.
    20. Hallegatte, Stéphane & Ghil, Michael, 2008. "Natural disasters impacting a macroeconomic model with endogenous dynamics," Ecological Economics, Elsevier, vol. 68(1-2), pages 582-592, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-015-2085-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.