IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i3d10.1007_s11069-021-05152-3.html
   My bibliography  Save this article

Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models

Author

Listed:
  • Hadush Meresa

    (University of Bonn
    Ethiopian Construction Design and Supervision Work Corporation)

  • Bernhard Tischbein

    (University of Bonn)

  • Tewodros Mekonnen

    (Ethiopian Construction Design and Supervision Work Corporation)

Abstract

Changes in climate intensity and frequency, including extreme events, heavy and intense rainfall, have the greatest impact on water resource management and flood risk management. Significant changes in air temperature, precipitation, and humidity are expected in future due to climate change. The influence of climate change on flood hazards is subject to considerable uncertainty that comes from the climate model discrepancies, climate bias correction methods, flood frequency distribution, and hydrological model parameters. These factors play a crucial role in flood risk planning and extreme event management. With the advent of the Coupled Model Inter-comparison Project Phase 6, flood managers and water resource planners are interested to know how changes in catchment flood risk are expected to alter relative to previous assessments. We examine catchment-based projected changes in flood quantiles and extreme high flow events for Awash catchments. Conceptual hydrological models (HBV, SMART, NAM and HYMOD), three downscaling techniques (EQM, DQM, and SQF), and an ensemble of hydrological parameter sets were used to examine changes in peak flood magnitude and frequency under climate change in the mid and end of the century. The result shows that projected annual extreme precipitation and flood quantiles could increase substantially in the next several decades in the selected catchments. The associated uncertainty in future flood hazards was quantified using aggregated variance decomposition and confirms that climate change is the dominant factor in Akaki (C2) and Awash Hombole (C5) catchments, whereas in Awash Bello (C4) and Kela (C3) catchments bias correction types is dominate, and Awash Kuntura (C1) both climate models and bias correction methods are essential factors. For the peak flow quantiles, climate models and hydrologic models are two main sources of uncertainty (31% and 18%, respectively). In contrast, the role of hydrological parameters to the aggregated uncertainty of changes in peak flow hazard variable is relatively small (5%), whereas the flood frequency contribution is much higher than the hydrologic model parameters. These results provide useful knowledge for policy-relevant flood indices, water resources and flood risk control and for studies related to uncertainty associated with peak flood magnitude and frequency.

Suggested Citation

  • Hadush Meresa & Bernhard Tischbein & Tewodros Mekonnen, 2022. "Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2649-2679, April.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05152-3
    DOI: 10.1007/s11069-021-05152-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05152-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05152-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    2. I. G. Pechlivanidis & B. Arheimer & C. Donnelly & Y. Hundecha & S. Huang & V. Aich & L. Samaniego & S. Eisner & P. Shi, 2017. "Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions," Climatic Change, Springer, vol. 141(3), pages 467-481, April.
    3. Thierry Coulibaly & Moinul Islam & Shunsuke Managi, 2020. "The Impacts of Climate Change and Natural Disasters on Agriculture in African Countries," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 347-364, July.
    4. Reto Knutti & Jan Sedláček, 2013. "Robustness and uncertainties in the new CMIP5 climate model projections," Nature Climate Change, Nature, vol. 3(4), pages 369-373, April.
    5. J. Refsgaard & K. Arnbjerg-Nielsen & M. Drews & K. Halsnæs & E. Jeppesen & H. Madsen & A. Markandya & J. Olesen & J. Porter & J. Christensen, 2013. "The role of uncertainty in climate change adaptation strategies—A Danish water management example," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(3), pages 337-359, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    2. Maria Mavrouli & Spyridon Mavroulis & Efthymios Lekkas & Athanassios Tsakris, 2022. "Infectious Diseases Associated with Hydrometeorological Hazards in Europe: Disaster Risk Reduction in the Context of the Climate Crisis and the Ongoing COVID-19 Pandemic," IJERPH, MDPI, vol. 19(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    2. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    3. Li-Chi Chiang & Indrajeet Chaubey & Nien-Ming Hong & Yu-Pin Lin & Tao Huang, 2012. "Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed," IJERPH, MDPI, vol. 9(10), pages 1-31, October.
    4. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    5. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    6. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    7. Anil Markandya & Enrica De Cian & Laurent Drouet & Josué M. Polanco-Martìnez & Francesco Bosello, 2016. "Building Uncertainty into the Adaptation Cost Estimation in Integrated Assessment Models," Working Papers 2016.21, Fondazione Eni Enrico Mattei.
    8. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    10. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    11. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    12. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    13. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    14. Escalante, Luis Enrique & Maisonnave, Helene, 2022. "Impacts of climate disasters on women and food security in Bolivia," Economic Modelling, Elsevier, vol. 116(C).
    15. J. Refsgaard & H. Madsen & V. Andréassian & K. Arnbjerg-Nielsen & T. Davidson & M. Drews & D. Hamilton & E. Jeppesen & E. Kjellström & J. Olesen & T. Sonnenborg & D. Trolle & P. Willems & J. Christens, 2014. "A framework for testing the ability of models to project climate change and its impacts," Climatic Change, Springer, vol. 122(1), pages 271-282, January.
    16. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    17. Frans Klijn & Bruno Merz & Edmund Penning-Rowsell & Zbigniew Kundzewicz, 2015. "Preface: climate change proof flood risk management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 837-843, August.
    18. Zagaria, Cecilia & Schulp, Catharina J.E. & Malek, Žiga & Verburg, Peter H., 2023. "Potential for land and water management adaptations in Mediterranean croplands under climate change," Agricultural Systems, Elsevier, vol. 205(C).
    19. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    20. Vincent Bian & Merrick Cai & Christopher L. Follett, 2023. "Understanding opposing predictions of Prochlorococcus in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05152-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.