IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v69y2009i3p497-508.html
   My bibliography  Save this article

Panjer recursion versus FFT for compound distributions

Author

Listed:
  • Paul Embrechts
  • Marco Frei

Abstract

Numerical evaluation of compound distributions is an important task in insurance mathematics and quantitative risk management. In practice, both recursive methods as well as transform based techniques are widely used. We give a survey of these tools, point out the respective merits and provide some numerical examples. Copyright Springer-Verlag 2009

Suggested Citation

  • Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
  • Handle: RePEc:spr:mathme:v:69:y:2009:i:3:p:497-508
    DOI: 10.1007/s00186-008-0249-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0249-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0249-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U., 1982. "On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 13-18, January.
    2. H. Panjer, Harry & Shaun Wang,, 1993. "On the Stability of Recursive Formulas," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 227-258, November.
    3. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    4. Grübel, Rudolf & Hermesmeier, Renate, 2000. "Computation of Compound Distributions II: Discretization Errors and Richardson Extrapolation," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 309-331, November.
    5. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 197-214, November.
    6. Sundt, Bjørn, 1999. "On Multivariate Panjer Recursions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 29-45, May.
    7. Sundt, Bjørn & Jewell, William S., 1981. "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 27-39, June.
    8. Panjer, Harry H. & Willmot, Gordon E., 1986. "Computational aspects of recursive evaluation of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 5(1), pages 113-116, January.
    9. Vernic, Raluca, 1999. "Recursive Evaluation of Some Bivariate Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 315-325, November.
    10. Bladt, Mogens, 2005. "A Review on Phase-type Distributions and their Use in Risk Theory," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 145-161, May.
    11. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    12. Hesselager, Ole, 1996. "Recursions for certain bivariate counting distributions and their compound distributions," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 35-52, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    2. Finner, H. & Kern, P. & Scheer, M., 2015. "On some compound distributions with Borel summands," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 234-244.
    3. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.
    4. Francesca Greselin & Fabio Piacenza & Ričardas Zitikis, 2019. "Practice Oriented and Monte Carlo Based Estimation of the Value-at-Risk for Operational Risk Measurement," Risks, MDPI, vol. 7(2), pages 1-20, May.
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Feria-Domínguez, José Manuel & Jiménez-Rodríguez, Enrique & Sholarin, Ola, 2015. "Tackling the over-dispersion of operational risk: Implications on capital adequacy requirements," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 206-221.
    7. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    8. J. D. Opdyke, 2016. "Fast, Accurate, Straightforward Extreme Quantiles of Compound Loss Distributions," Papers 1610.03718, arXiv.org, revised Jul 2017.
    9. Denuit, Michel & Trufin, Julien, 2016. "Collective Loss Reserving with Two Types of Claims in Motor Third Party Liability Insurance," LIDAM Discussion Papers ISBA 2016029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    11. Muneya Matsui, 2017. "Prediction of Components in Random Sums," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 573-587, June.
    12. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    13. Fomichov, Vladimir & González Cázares, Jorge & Ivanovs, Jevgenijs, 2021. "Implementable coupling of Lévy process and Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 407-431.
    14. Zhou, Xiaoping & Durfee, Antonina V. & Fabozzi, Frank J., 2016. "On stability of operational risk estimates by LDA: From causes to approaches," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 266-278.
    15. Dirk Tasche, 2015. "The Two Defaults Scenario for Stressing Credit Portfolio Loss Distributions," JRFM, MDPI, vol. 9(1), pages 1-18, December.
    16. Marios N. Kyriacou, 2015. "Credit Risk Measurement in Financial Institutions: Going Beyond Regulatory Compliance," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 31-72, June.
    17. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    18. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    19. Denuit, Michel & Trufin, Julien, 2016. "Beyond the Tweedie Reserving Model: The Collective Approach to Loss Development," LIDAM Discussion Papers ISBA 2016030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    2. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    3. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    4. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    5. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    6. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    7. Eisele, Karl-Theodor, 2008. "Recursions for multivariate compound phase variables," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 65-72, February.
    8. Xiaolin Luo & Pavel V. Shevchenko, 2009. "Computing Tails of Compound Distributions Using Direct Numerical Integration," Papers 0904.0830, arXiv.org, revised Feb 2010.
    9. Marios N. Kyriacou, 2015. "Credit Risk Measurement in Financial Institutions: Going Beyond Regulatory Compliance," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 31-72, June.
    10. Anh Ninh, 2021. "Robust newsvendor problems with compound Poisson demands," Annals of Operations Research, Springer, vol. 302(1), pages 327-338, July.
    11. Pierre-Olivier Goffard & Stéphane Loisel & Denys Pommeret, 2017. "Polynomial Approximations for Bivariate Aggregate Claims Amount Probability Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 151-174, March.
    12. Wu, Xueyuan & Yuen, Kam C., 2003. "A discrete-time risk model with interaction between classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 117-133, August.
    13. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    14. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    15. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    16. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.
    17. Eisele, Karl-Theodor, 2006. "Recursions for compound phase distributions," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 149-156, February.
    18. Raluca Vernic, 2018. "On the Evaluation of the Distribution of a General Multivariate Collective Model: Recursions versus Fast Fourier Transform," Risks, MDPI, vol. 6(3), pages 1-14, August.
    19. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    20. Bae, Taehan & Kim, Changki & Kulperger, Reginald J., 2009. "Securitization of motor insurance loss rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 48-58, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:69:y:2009:i:3:p:497-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.