Advanced Search
MyIDEAS: Login

On the Lagrangian Katz family of distributions as a claim frequency model

Contents:

Author Info

  • Gathy, Maude
  • Lefèvre, Claude
Registered author(s):

    Abstract

    The Panjer (Katz) family of distributions is defined by a particular first-order recursion which is built on the basis of two parameters. It is known to characterize the Poisson, negative binomial and binomial distributions. In insurance, its main usefulness is to yield a simple recursive algorithm for the aggregate claims distribution. The present paper is concerned with the more general Lagrangian Katz family of distributions. That family satisfies an extended recursion which now depends on three parameters. To begin with, this recursion is derived through a certain first-crossing problem and two applications in risk theory are described. The distributions covered by the recursion are then identified as the generalized Poisson, generalized negative binomial and binomial distributions. A few other properties of the family are pointed out, including the index of dispersion, an extended Panjer algorithm for compound sums and the asymptotic tail behaviour. Finally, the relevance of the family is illustrated with several data sets on the frequency of car accidents.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8N-4YT6CY2-3/2/4910b9e03af244055b806f29484a362a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 47 (2010)
    Issue (Month): 1 (August)
    Pages: 76-83

    as in new window
    Handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:76-83

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/505554

    Related research

    Keywords: Claim number distribution Lagrangian Katz family of distributions Generalized Poisson distribution Generalized negative binomial distribution Generalized Markov-Polya distribution Index of dispersion Extended Panjer algorithm Asymptotic tail behaviour;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    2. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    3. Ambagaspitiya, Rohana S., 1998. "Compound bivariate Lagrangian Poisson distributions," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 21-31, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:76-83. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.