IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v26y2021i6d10.1007_s11027-021-09957-2.html
   My bibliography  Save this article

Ascription of the differences between Germany and Uganda’s Land Use, Land-Use Change, and Forestry sector greenhouse gas methodologies for inventory improvement

Author

Listed:
  • Michael Mugarura

    (Thünen Institute of Forest Ecosystems
    Hochschule für nachhaltige Entwicklung Eberswalde (HNEE))

  • Wolfgang Stümer

    (Thünen Institute of Forest Ecosystems)

  • Karsten Dunger

    (Thünen Institute of Forest Ecosystems)

  • Andreas Bolte

    (Thünen Institute of Forest Ecosystems)

  • Matt Ramlow

    (Coalition for Rainforest Nations)

  • Emmanuel Ackom

    (Denmark Technical University (DTU))

  • Steffi Röhling

    (Thünen Institute of Forest Ecosystems)

Abstract

Germany, as an Annex I Party is expected to prepare and submit annual Greenhouse Gas (GHG) Inventories of emissions and removals, including Land Use, Land-Use Change, and Forestry (LULUCF) sector. Uganda, a non-Annex 1 party, is institutionalizing a sustainable national GHG inventory system. The LULUCF sector is a key emission source and plays a vital role in these two countries’ GHG inventories. This research analyzes the differences between applied LULUCF methodologies in Uganda as a developing country and Germany as a developed country with a particular focus on the forestry sector. It further analyzes the root cause factors for the different approaches, existing gaps and gives recommendations for future inventory improvement. The intricate institutional, policy framework, expertise, and applied methodological approaches for carbon change estimations in biomass pools are analyzed. Uncertainty analysis and time-series consistency process is reviewed with regard to how the countries’ quality assurance/control (QA/QC) and verification approaches adhere to the transparency framework. Resource limitations and data collection challenges dictate that Uganda uses the tier 1 methodological approach for emissions inventory. Consolidation and institutionalization of the GHG process will improve inventory accuracy while enhancing adherence to climate commitments. Germany uses higher tiers. Besides, government support for planned improvements using the recently developed country-specific biomass functions for estimating belowground biomass of silver birch, oak, and Scotch pine tree species will be essential for improving inventory quality. Operationalization of the inventory plan (IP) will be critical in driving inventory improvements geared towards time-series consistency, comparability, and transparency.

Suggested Citation

  • Michael Mugarura & Wolfgang Stümer & Karsten Dunger & Andreas Bolte & Matt Ramlow & Emmanuel Ackom & Steffi Röhling, 2021. "Ascription of the differences between Germany and Uganda’s Land Use, Land-Use Change, and Forestry sector greenhouse gas methodologies for inventory improvement," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(6), pages 1-30, August.
  • Handle: RePEc:spr:masfgc:v:26:y:2021:i:6:d:10.1007_s11027-021-09957-2
    DOI: 10.1007/s11027-021-09957-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-021-09957-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-021-09957-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ampaire, Edidah L. & Jassogne, Laurence & Providence, Happy & Acosta, Mariola & Twyman, Jennifer & Winowiecki, Leigh & van Asten, Piet, 2017. "Institutional challenges to climate change adaptation: A case study on policy action gaps in Uganda," Environmental Science & Policy, Elsevier, vol. 75(C), pages 81-90.
    2. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    3. Majaliwa Gilbert Jackson Mwanjalolo & Barasa Bernard & Mukwaya Isolo Paul & Wanyama Joshua & Kutegeka Sophie & Nakyeyune Cotilda & Nakileza Bob & Diisi John & Ssenyonjo Edward & Nakangu Barbara, 2018. "Assessing the Extent of Historical, Current, and Future Land Use Systems in Uganda," Land, MDPI, vol. 7(4), pages 1-17, November.
    4. Hake, Jürgen-Friedrich & Fischer, Wolfgang & Venghaus, Sandra & Weckenbrock, Christoph, 2015. "The German Energiewende – History and status quo," Energy, Elsevier, vol. 92(P3), pages 532-546.
    5. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo, 2018. "The long-run decoupling of emissions and output: Evidence from the largest emitters," Energy Policy, Elsevier, vol. 118(C), pages 58-68.
    6. Lahn, Bård & Sundqvist, Göran, 2017. "Science as a “fixed point”? Quantification and boundary objects in international climate politics," Environmental Science & Policy, Elsevier, vol. 67(C), pages 8-15.
    7. Henry, Matieu & Maniatis, Danae & Gitz, Vincent & Huberman, David & Valentini, Riccardo, 2011. "Implementation of REDD+ in sub-Saharan Africa: state of knowledge, challenges and opportunities," Environment and Development Economics, Cambridge University Press, vol. 16(4), pages 381-404, August.
    8. Claire Granier & Bertrand Bessagnet & Tami Bond & Ariela D’Angiola & Hugo Denier van der Gon & Gregory Frost & Angelika Heil & Johannes Kaiser & Stefan Kinne & Zbigniew Klimont & Silvia Kloster & Jean, 2011. "Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period," Climatic Change, Springer, vol. 109(1), pages 163-190, November.
    9. Pieter Pauw & Kennedy Mbeva & Harro Asselt, 2019. "Subtle differentiation of countries’ responsibilities under the Paris Agreement," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.
    10. Beck, Silke & Kuhlicke, Christian & Görg, Christoph, 2009. "Climate policy integration, coherence, and governance in Germany. PEER Climate Change Initiative - Project 2: "Climate policy integration, coherence, and governance"," UFZ Reports 01/2009, Helmholtz Centre for Environmental Research (UFZ).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2019. "Varieties of coal-fired power phase-out across Europe," Energy Policy, Elsevier, vol. 132(C), pages 620-632.
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    4. Elżbieta Szaruga & Zuzanna Kłos-Adamkiewicz & Agnieszka Gozdek & Elżbieta Załoga, 2021. "Linkages between Energy Delivery and Economic Growth from the Point of View of Sustainable Development and Seaports," Energies, MDPI, vol. 14(14), pages 1-61, July.
    5. González-Álvarez, María A. & Montañés, Antonio, 2023. "CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship," Economic Modelling, Elsevier, vol. 121(C).
    6. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    7. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Gibson, John & Heutel, Garth, 2023. "Pollution and labor market search externalities over the business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    9. Fischer, W. & Hake, J.-Fr. & Kuckshinrichs, W. & Schröder, T. & Venghaus, S., 2016. "German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende”," Energy, Elsevier, vol. 115(P3), pages 1580-1591.
    10. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    11. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    12. Koech Cheruiyot & Ezekiel Lengaram & Mncedisi Siteleki, 2024. "South Africa’s Energy Landscape Amidst the Crisis: Unpacking Energy Sources and Drivers with 2022 South African Census Data," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    13. Galvin, Ray, 2018. "‘Them and us’: Regional-national power-plays in the German energy transformation: A case study in Lower Franconia," Energy Policy, Elsevier, vol. 113(C), pages 269-277.
    14. Gea Hoogendoorn & Bernadette Sütterlin & Michael Siegrist, 2021. "Tampering with Nature: A Systematic Review," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 141-156, January.
    15. Kimon Keramidas & Stephane Tchung-Ming & Ana Raquel Diaz-Vazquez & Matthias Weitzel & Toon Vandyck & Jacques Despres & Andreas Schmitz & Luis Rey Los Santos & Krzysztof Wojtowicz & Burkhard Schade & B, 2018. "Global Energy and Climate Outlook 2018: Sectoral mitigation options towards a low-emissions economy," JRC Research Reports JRC113446, Joint Research Centre.
    16. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    17. Servaas Storm & Enno Schroder, 2018. "Economic Growth and Carbon Emissions: The Road to `Hothouse Earth` is Paved with Good Intentions," Working Papers Series 84, Institute for New Economic Thinking.
    18. Roshan Jha & Arpita Mondal & Anjana Devanand & M. K. Roxy & Subimal Ghosh, 2022. "Limited influence of irrigation on pre-monsoon heat stress in the Indo-Gangetic Plain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Juliet Katusiime & Brigitta Schütt, 2023. "Towards Legislation Responsive to Integrated Watershed Management Approaches and Land Tenure," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    20. Xiaozi Liu & Henrik Lindhjem & Kristine Grimsrud & Einar Leknes & Endre Tvinnereim, 2023. "Is there a generational shift in preferences for forest carbon sequestration vs. preservation of agricultural landscapes?," Climatic Change, Springer, vol. 176(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:26:y:2021:i:6:d:10.1007_s11027-021-09957-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.