IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i7p1191-1202.html
   My bibliography  Save this article

Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China

Author

Listed:
  • Dengpan Xiao
  • Juana Moiwo
  • Fulu Tao
  • Yonghui Yang
  • Yanjun Shen
  • Quanhong Xu
  • Jianfeng Liu
  • He Zhang
  • Fengshan Liu

Abstract

Weather and climate variability are predicted to impact food security by altering crop growth, phenology, and yield processes. Adaptation measures are critical for reducing future vulnerability of crop production to warming weather and climate variability. It is therefore vital to investigate the shifts in crop phenological processes in response to weather/climate variability. This study analyzes the trends in the dates of winter wheat (Triticum aestivum L.) phenology in relation to average temperature of different growth stage and the adaptation of the crop to weather/climate variability in China. The results suggest that the phenological phases of winter wheat have specific regional patterns in China. There are also significant shifts in the dates of winter wheat phenology and the duration of the growth stages in the investigated 30-year period of 1980–2009. While the date of sowing winter wheat delays, the dates of post-winter phenological phases (e.g., heading and maturity dates) advances in most areas of China. Detailed analysis shows that the changes in the phenological phases of winter wheat are strongly related to temperature trends. Temporal trends in phenological phases of winter wheat are similar in characteristics to corresponding trends in temperature. Although warming weather and climate variability is the main driver of the changes in winter wheat phenology, temperature is lower than before in most of the investigated stations during the period from heading to maturity—mainly the grain-filling stage. This is mainly due to the early heading and maturity dates, which in turn not only prolong growth stages but also enhance productivity of winter wheat. This could be a vital adaptation strategy of winter wheat to warming weather with beneficial effects in terms of productivity. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Dengpan Xiao & Juana Moiwo & Fulu Tao & Yonghui Yang & Yanjun Shen & Quanhong Xu & Jianfeng Liu & He Zhang & Fengshan Liu, 2015. "Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1191-1202, October.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:7:p:1191-1202
    DOI: 10.1007/s11027-013-9531-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-013-9531-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-013-9531-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anil Misra, 2013. "Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 673-689, June.
    2. Rooholla Moradi & Alireza Koocheki & Mehdi Nassiri Mahallati & Hamed Mansoori, 2013. "Adaptation strategies for maize cultivation under climate change in Iran: irrigation and planting date management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 265-284, February.
    3. Munang Tingem & Mike Rivington, 2009. "Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(2), pages 153-168, February.
    4. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
    2. Dianyuan Ding & Hao Feng & Ying Zhao & Wenzhao Liu & Haixin Chen & Jianqiang He, 2016. "Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China," Climatic Change, Springer, vol. 138(1), pages 157-171, September.
    3. Yahui Guo & Wenxiang Wu & Yumei Liu & Zhaofei Wu & Xiaojun Geng & Yaru Zhang & Christopher Robin Bryant & Yongshuo Fu, 2020. "Impacts of Climate and Phenology on the Yields of Early Mature Rice in China," Sustainability, MDPI, vol. 12(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.
    2. Rooholla Moradi & Alireza Koocheki & Mehdi Nassiri Mahallati, 2014. "Adaptation of maize to climate change impacts in Iran," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1223-1238, December.
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    5. Oludare Sunday Durodola & Khaldoon A. Mourad, 2020. "Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    6. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    7. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    8. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    9. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    10. Valentina Mereu & Gianluca Carboni & Andrea Gallo & Raffaello Cervigni & Donatella Spano, 2015. "Impact of climate change on staple food crop production in Nigeria," Climatic Change, Springer, vol. 132(2), pages 321-336, September.
    11. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    12. Shi, Yusheng & Sasai, Takahiro & Yamaguchi, Yasushi, 2014. "Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010," Ecological Modelling, Elsevier, vol. 272(C), pages 98-115.
    13. Zongxing, Li & Qi, Feng & Zongjie, Li & Xufeng, Wang & Juan, Gui & Baijuan, Zhang & Yuchen, Li & Xiaohong, Deng & Jian, Xue & Wende, Gao & Anle, Yang & Fusen, Nan & Pengfei, Liang, 2021. "Reversing conflict between humans and the environment - The experience in the Qilian Mountains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Kathuroju, Naven & White, Michael A. & Symanzik, Jürgen & Schwartz, Mark D. & Powell, James A. & Nemani, Ramakrishna R., 2007. "On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models," Ecological Modelling, Elsevier, vol. 201(2), pages 144-156.
    15. Zeyuan Qiu & Tony Prato, 2012. "Economic feasibility of adapting crop enterprises to future climate change: a case study of flexible scheduling and irrigation for representative farms in Flathead Valley, Montana, USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(3), pages 223-242, March.
    16. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    17. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    18. Moranga, Lawrence Ongwae & Otieno, David Jakinda & Oluoch-Kosura, Willis, 2016. "Analysis Of Factors Influencing Tomato Farmers’ Willingness To Adopt Innovative Timing Approaches For Management Of Climate Change Effects In Taita Taveta County, Kenya," Dissertations and Theses 269270, University of Nairobi, Department of Agricultural Economics.
    19. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    20. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:7:p:1191-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.