IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i5d10.1007_s10951-021-00699-2.html
   My bibliography  Save this article

Local search approaches for the test laboratory scheduling problem with variable task grouping

Author

Listed:
  • Florian Mischek

    (TU Wien)

  • Nysret Musliu

    (TU Wien)

  • Andrea Schaerf

    (University of Udine)

Abstract

The Test Laboratory Scheduling Problem (TLSP) is a real-world scheduling problem that extends the well-known Resource-Constrained Project Scheduling Problem (RCPSP) by several new constraints. Most importantly, the jobs have to be assembled out of several smaller tasks by the solver, before they can be scheduled. In this paper, we introduce different metaheuristic solution approaches for this problem. We propose four new neighborhoods that modify the grouping of tasks. In combination with neighborhoods for scheduling, they are used by our metaheuristics to produce high-quality solutions for both randomly generated and real-world instances. In particular, Simulated Annealing managed to find solutions that are competitive with the best known results and improve upon the state-of-the-art for larger instances. The algorithm is currently used for the daily planning of a large real-world laboratory.

Suggested Citation

  • Florian Mischek & Nysret Musliu & Andrea Schaerf, 2023. "Local search approaches for the test laboratory scheduling problem with variable task grouping," Journal of Scheduling, Springer, vol. 26(5), pages 457-477, October.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:5:d:10.1007_s10951-021-00699-2
    DOI: 10.1007/s10951-021-00699-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-021-00699-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-021-00699-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2008. "Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1238-1250, June.
    2. Florian Mischek & Nysret Musliu, 2021. "A local search framework for industrial test laboratory scheduling," Annals of Operations Research, Springer, vol. 302(2), pages 533-562, July.
    3. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    4. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    5. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    6. Drexl, Andreas & Nissen, Rudiger & Patterson, James H. & Salewski, Frank, 2000. "ProGen/[pi]x - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions," European Journal of Operational Research, Elsevier, vol. 125(1), pages 59-72, August.
    7. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    8. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1997. "Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application," European Journal of Operational Research, Elsevier, vol. 102(1), pages 88-110, October.
    9. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    10. Dauzere-Peres, S. & Roux, W. & Lasserre, J. B., 1998. "Multi-resource shop scheduling with resource flexibility," European Journal of Operational Research, Elsevier, vol. 107(2), pages 289-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Mischek & Nysret Musliu, 2021. "A local search framework for industrial test laboratory scheduling," Annals of Operations Research, Springer, vol. 302(2), pages 533-562, July.
    2. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    3. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    4. Gaby Pinto & Yariv Ben-Dov & Gad Rabinowitz, 2013. "Formulating and solving a multi-mode resource-collaboration and constrained scheduling problem (MRCCSP)," Annals of Operations Research, Springer, vol. 206(1), pages 311-339, July.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    7. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    8. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    9. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    10. Grzegorz Waligóra, 2016. "Comparative Analysis of Some Metaheuristics for Discrete-Continuous Project Scheduling with Activities of Identical Processing Rates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-32, June.
    11. Roland Braune & Karl F. Doerner, 2017. "Real-world flexible resource profile scheduling with multiple criteria: learning scalarization functions for MIP and heuristic approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 952-972, August.
    12. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    13. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    14. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    15. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    16. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    17. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    18. Grzegorz Waligóra, 2014. "Discrete-continuous project scheduling with discounted cash inflows and various payment models—a review of recent results," Annals of Operations Research, Springer, vol. 213(1), pages 319-340, February.
    19. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    20. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:5:d:10.1007_s10951-021-00699-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.