IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i2d10.1007_s10951-017-0525-1.html
   My bibliography  Save this article

Staff assignment with lexicographically ordered acceptance levels

Author

Listed:
  • Tom Rihm

    (University of Bern)

  • Philipp Baumann

    (University of Bern)

Abstract

Staff assignment is a compelling exercise that affects most companies and organizations in the service industries. Here, we introduce a new real-world staff assignment problem that was reported to us by a Swiss provider of commercial employee scheduling software. The problem consists of assigning employees to work shifts subject to a large variety of critical and noncritical requests, including employees’ personal preferences. Each request has a target value, and deviations from the target value are associated with integer acceptance levels. These acceptance levels reflect the relative severity of possible deviations, e.g., for the request of an employee to have at least two weekends off, having one weekend off is preferable to having no weekend off and thus receives a higher acceptance level. The objective is to minimize the total number of deviations in lexicographical order of the acceptance levels. Staff assignment approaches from the literature are not applicable to this problem. We provide a binary linear programming formulation and propose a matheuristic for large-scale instances. The matheuristic employs effective strategies to determine the subproblems and focuses on finding good feasible solutions to the subproblems rather than proving their optimality. Our computational analysis based on real-world data shows that the matheuristic scales well and outperforms commercial employee scheduling software.

Suggested Citation

  • Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:2:d:10.1007_s10951-017-0525-1
    DOI: 10.1007/s10951-017-0525-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0525-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0525-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    2. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    3. Dylan Jones & Mehrdad Tamiz, 2010. "Goal Programming Variants," International Series in Operations Research & Management Science, in: Practical Goal Programming, edition 1, chapter 0, pages 11-22, Springer.
    4. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    5. Dowsland, Kathryn A., 1998. "Nurse scheduling with tabu search and strategic oscillation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 393-407, April.
    6. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, December.
    7. Charnes, A. & Collomb, B., 1972. "Optimal economic stabilization policy: Linear goal-interval programming models," Socio-Economic Planning Sciences, Elsevier, vol. 6(4), pages 431-435, August.
    8. Federico Della Croce & Fabio Salassa, 2014. "A variable neighborhood search based matheuristic for nurse rostering problems," Annals of Operations Research, Springer, vol. 218(1), pages 185-199, July.
    9. Kvanli, Alan H, 1980. "Financial planning using goal programming," Omega, Elsevier, vol. 8(2), pages 207-218.
    10. Huguette Beaulieu & Jacques Ferland & Bernard Gendron & Philippe Michelon, 2000. "A mathematical programming approach for scheduling physicians in the emergency room," Health Care Management Science, Springer, vol. 3(3), pages 193-200, June.
    11. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    12. Ching-Ter Chang, 2006. "Mixed binary interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 469-473, April.
    13. Berrada, Ilham & Ferland, Jacques A. & Michelon, Philippe, 1996. "A multi-objective approach to nurse scheduling with both hard and soft constraints," Socio-Economic Planning Sciences, Elsevier, vol. 30(3), pages 183-193, September.
    14. Crarnes, A. & Cooper, W. W. & Harrald, J. & Karwan, K. R. & Wallace, W. A., 1976. "A goal interval programming model for resource allocation in a marine environmental protection program," Journal of Environmental Economics and Management, Elsevier, vol. 3(4), pages 347-362, December.
    15. Broos Maenhout & Mario Vanhoucke, 2008. "Comparison and hybridization of crossover operators for the nurse scheduling problem," Annals of Operations Research, Springer, vol. 159(1), pages 333-353, March.
    16. Pieter Smet & Burak Bilgin & Patrick De Causmaecker & Greet Vanden Berghe, 2014. "Modelling and evaluation issues in nurse rostering," Annals of Operations Research, Springer, vol. 218(1), pages 303-326, July.
    17. Jones, D. F. & Tamiz, M., 1995. "Expanding the flexibility of goal programming via preference modelling techniques," Omega, Elsevier, vol. 23(1), pages 41-48, February.
    18. D. Parr & J. Thompson, 2007. "Solving the multi-objective nurse scheduling problem with a weighted cost function," Annals of Operations Research, Springer, vol. 155(1), pages 279-288, November.
    19. Chang, Ching-Ter & Lin, Teng-Chiao, 2009. "Interval goal programming for S-shaped penalty function," European Journal of Operational Research, Elsevier, vol. 199(1), pages 9-20, November.
    20. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    21. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    22. Kopanos, Georgios M. & Méndez, Carlos A. & Puigjaner, Luis, 2010. "MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 207(2), pages 644-655, December.
    23. Valls, Vicente & Pérez, Ángeles & Quintanilla, Sacramento, 2009. "Skilled workforce scheduling in Service Centres," European Journal of Operational Research, Elsevier, vol. 193(3), pages 791-804, March.
    24. Salem Al-Yakoob & Hanif Sherali, 2007. "Mixed-integer programming models for an employee scheduling problem with multiple shifts and work locations," Annals of Operations Research, Springer, vol. 155(1), pages 119-142, November.
    25. Dylan Jones & Mehrdad Tamiz, 2016. "A Review of Goal Programming," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 903-926, Springer.
    26. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Böðvarsdóttir, Elín Björk & Smet, Pieter & Vanden Berghe, Greet & Stidsen, Thomas J.R., 2021. "Achieving compromise solutions in nurse rostering by using automatically estimated acceptance thresholds," European Journal of Operational Research, Elsevier, vol. 292(3), pages 980-995.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    2. Chang, Ching-Ter & Lin, Teng-Chiao, 2009. "Interval goal programming for S-shaped penalty function," European Journal of Operational Research, Elsevier, vol. 199(1), pages 9-20, November.
    3. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    6. Erhard, Melanie & Schoenfelder, Jan & Fügener, Andreas & Brunner, Jens O., 2018. "State of the art in physician scheduling," European Journal of Operational Research, Elsevier, vol. 265(1), pages 1-18.
    7. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    8. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    9. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    10. Aznar, Jeronimo & Guijarro, Francisco, 2007. "Estimating regression parameters with imprecise input data in an appraisal context," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1896-1907, February.
    11. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    12. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    13. Zgajnar, Jaka & Kavcic, Stane, 2011. "Weighted Goal Programming and Penalty Functions: Whole-farm Planning Approach Under Risk," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 118033, European Association of Agricultural Economists.
    14. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    15. J P Oddoye & M A Yaghoobi & M Tamiz & D F Jones & P Schmidt, 2007. "A multi-objective model to determine efficient resource levels in a medical assessment unit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1563-1573, December.
    16. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    17. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    18. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    19. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    20. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:2:d:10.1007_s10951-017-0525-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.