IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i3d10.1007_s10957-017-1097-0.html
   My bibliography  Save this article

Perfect Duality in Solving Geometric Programming Problems Under Uncertainty

Author

Listed:
  • Dennis L. Bricker

    (University of Iowa)

  • K. O. Kortanek

    (University of Iowa)

Abstract

We examine computational solutions to all of the geometric programming problems published in a recent paper in the Journal of Optimization Theory and Applications. We employed three implementations of published algorithms interchangeably to obtain “perfect duality” for all of these problems. Perfect duality is taken to mean that a computed solution of an optimization problem achieves two properties: (1) primal and dual feasibility and (2) equality of primal and dual objective function values, all within the accuracy of the machine employed. Perfect duality was introduced by Duffin (Math Program 4:125–143,1973). When primal and dual objective values differ, we say there is a duality gap.

Suggested Citation

  • Dennis L. Bricker & K. O. Kortanek, 2017. "Perfect Duality in Solving Geometric Programming Problems Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1055-1065, June.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1097-0
    DOI: 10.1007/s10957-017-1097-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1097-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1097-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Smeers & Daniel Tyteca, 1984. "A Geometric Programming Model for the Optimal Design of Wastewater Treatment Plants," Operations Research, INFORMS, vol. 32(2), pages 314-342, April.
    2. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1075-1078, September.
    3. Mandal, Nirmal Kumar & Roy, Tapan Kumar & Maiti, Manoranjan, 2006. "Inventory model of deteriorated items with a constraint: A geometric programming approach," European Journal of Operational Research, Elsevier, vol. 173(1), pages 199-210, August.
    4. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 243-265, July.
    5. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    6. SMEERS, Yves & TYTECA, Daniel, 1984. "A geometric programming model for the optimal design of wastewater treatment plants," LIDAM Reprints CORE 578, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xiaoxia & Ma, Di & Choe, Kwang-Il, 2023. "Uncertain mean–variance portfolio model with inflation taking linear uncertainty distributions," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 203-217.
    2. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    3. Wasim Akram Mandal & Sahidul Islam, 2017. "Multiobjective geometric programming problem under uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 85-109.
    4. Wasim Akram Mandal, 2021. "Weighted Tchebycheff Optimization Technique Under Uncertainty," Annals of Data Science, Springer, vol. 8(4), pages 709-731, December.
    5. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    6. Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
    7. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    8. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    9. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    10. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    11. R. Caballero & E. Cerda & M. Muñoz & L. Rey, 2002. "Analysis and comparisons of some solution concepts for stochastic programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 101-123, June.
    12. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    13. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    14. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    15. Cigdem Z. Gurgur & Charles T. Morley, 2008. "Lockheed Martin Space Systems Company Optimizes Infrastructure Project-Portfolio Selection," Interfaces, INFORMS, vol. 38(4), pages 251-262, August.
    16. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    17. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    19. Armin Jabbarzadeh & Leyla Aliabadi & Reza Yazdanparast, 2021. "Optimal payment time and replenishment decisions for retailer’s inventory system under trade credit and carbon emission constraints," Operational Research, Springer, vol. 21(1), pages 589-620, March.
    20. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1097-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.