IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v129y2006i2d10.1007_s10957-006-9062-3.html
   My bibliography  Save this article

Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation

Author

Listed:
  • S. Wang

    (University of Western Australia)

  • X. Q. Yang

    (Hong Kong Polytechnic University)

  • K. L. Teo

    (Curtin University of Technology)

Abstract

In this paper, we present a power penalty function approach to the linear complementarity problem arising from pricing American options. The problem is first reformulated as a variational inequality problem; the resulting variational inequality problem is then transformed into a nonlinear parabolic partial differential equation (PDE) by adding a power penalty term. It is shown that the solution to the penalized equation converges to that of the variational inequality problem with an arbitrary order. This arbitrary-order convergence rate allows us to achieve the required accuracy of the solution with a small penalty parameter. A numerical scheme for solving the penalized nonlinear PDE is also proposed. Numerical results are given to illustrate the theoretical findings and to show the effectiveness and usefulness of the method.

Suggested Citation

  • S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
  • Handle: RePEc:spr:joptap:v:129:y:2006:i:2:d:10.1007_s10957-006-9062-3
    DOI: 10.1007/s10957-006-9062-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9062-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9062-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Schwartz, Eduardo S., 1977. "The valuation of warrants: Implementing a new approach," Journal of Financial Economics, Elsevier, vol. 4(1), pages 79-93, January.
    4. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Attipoe, David Sena & Tambue, Antoine, 2021. "Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    2. Zhe Sun & Zhe Liu & Xiaoqi Yang, 2015. "On power penalty methods for linear complementarity problems arising from American option pricing," Journal of Global Optimization, Springer, vol. 63(1), pages 165-180, September.
    3. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    4. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    5. K. Zhang & K. Teo, 2013. "Convergence analysis of power penalty method for American bond option pricing," Journal of Global Optimization, Springer, vol. 56(4), pages 1313-1323, August.
    6. Y. Zhou & S. Wang & X. Yang, 2014. "A penalty approximation method for a semilinear parabolic double obstacle problem," Journal of Global Optimization, Springer, vol. 60(3), pages 531-550, November.
    7. Y. J. Liu & L. W. Zhang, 2008. "Convergence of the Augmented Lagrangian Method for Nonlinear Optimization Problems over Second-Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 557-575, December.
    8. Anna Clevenhaus & Matthias Ehrhardt & Michael Günther & Daniel Ševčovič, 2020. "Pricing American Options with a Non-Constant Penalty Parameter," JRFM, MDPI, vol. 13(6), pages 1-7, June.
    9. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    10. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    11. Rui Ding & Chaoren Ding & Quan Shen, 2023. "The interpolating element-free Galerkin method for the p-Laplace double obstacle mixed complementarity problem," Journal of Global Optimization, Springer, vol. 86(3), pages 781-820, July.
    12. Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
    13. Shuhua Chang & Xinyu Wang, 2015. "Modelling and Computation in the Valuation of Carbon Derivatives with Stochastic Convenience Yields," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-35, May.
    14. W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.
    15. Rock Stephane Koffi & Antoine Tambue, 2022. "A Fitted L-Multi-Point Flux Approximation Method for Pricing Options," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 633-663, August.
    16. Kai Zhang & Xiaoqi Yang, 2018. "Power Penalty Approach to American Options Pricing Under Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 311-331, October.
    17. Boshi Tian & Yaohua Hu & Xiaoqi Yang, 2015. "A box-constrained differentiable penalty method for nonlinear complementarity problems," Journal of Global Optimization, Springer, vol. 62(4), pages 729-747, August.
    18. R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.
    19. Yuan Li & Hai-Shan Han & Dan-Dan Yang, 2014. "A Penalized-Equation-Based Generalized Newton Method for Solving Absolute-Value Linear Complementarity Problems," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, September.
    20. Song Wang, 2015. "A penalty approach to a discretized double obstacle problem with derivative constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 775-790, August.
    21. K. Zhang, 2012. "Applying a Power Penalty Method to Numerically Pricing American Bond Options," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 278-291, July.
    22. Chen, Wen & Wang, Song, 2017. "A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 174-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    2. Zhongdi Cen & Anbo Le & Aimin Xu, 2012. "A Second-Order Difference Scheme for the Penalized Black–Scholes Equation Governing American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 49-62, June.
    3. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    4. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    5. Engstrom, Malin & Norden, Lars, 2000. "The early exercise premium in American put option prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 461-479, December.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Chuang-Chang Chang & Jun-Biao Lin, 2010. "The valuation of multivariate contingent claims under transformed trinomial approaches," Review of Quantitative Finance and Accounting, Springer, vol. 34(1), pages 23-36, January.
    8. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    9. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    10. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    11. Martzoukos, Spiros H. & Trigeorgis, Lenos, 2002. "Real (investment) options with multiple sources of rare events," European Journal of Operational Research, Elsevier, vol. 136(3), pages 696-706, February.
    12. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    13. Leisen, Dietmar P. J., 1998. "Pricing the American put option: A detailed convergence analysis for binomial models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1419-1444, August.
    14. Wei-Cheng Chen & Wei-Ho Chung, 2019. "Option Pricing via Multi-path Autoregressive Monte Carlo Approach," Papers 1906.06483, arXiv.org.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    17. Chandra Sekhara Rao, S. & Manisha,, 2018. "Numerical solution of generalized Black–Scholes model," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 401-421.
    18. Buckley, Adrian & Eijgenhuijsen, Hans, 1997. "A conceptual framework for evaluating foreign investments," Serie Research Memoranda 0008, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    19. Nyoumbi, Christelle Dleuna & Tambue, Antoine, 2023. "Convergence of a fitted finite volume method for pricing two dimensional assets with stochastic volatilities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 388-416.
    20. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:129:y:2006:i:2:d:10.1007_s10957-006-9062-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.