IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i1d10.1007_s10957-018-1299-0.html
   My bibliography  Save this article

Power Penalty Approach to American Options Pricing Under Regime Switching

Author

Listed:
  • Kai Zhang

    (Shenzhen University)

  • Xiaoqi Yang

    (Hong Kong Polytechnic University)

Abstract

This work aims at studying a power penalty approach to the coupled system of differential complementarity problems arising from the valuation of American options under regime switching. We introduce a power penalty method to approximate the differential complementarity problems, which results in a set of coupled nonlinear partial differential equations. By virtue of variational inequality theory, we establish the unique solvability of the system of differential complementarity problems. Moreover, the convergence property of this power penalty method in an appropriate infinite-dimensional space is explored, where an exponential convergence rate of the power penalty method is established and the monotonic convergence of the penalty method with respect to the penalty parameter is shown. Finally, some numerical experiments are presented to verify the convergence property of the power penalty method.

Suggested Citation

  • Kai Zhang & Xiaoqi Yang, 2018. "Power Penalty Approach to American Options Pricing Under Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 311-331, October.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1299-0
    DOI: 10.1007/s10957-018-1299-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1299-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1299-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    3. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    4. K. Zhang & K. Teo & M. Swartz, 2014. "A Robust Numerical Scheme For Pricing American Options Under Regime Switching Based On Penalty Method," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 463-483, April.
    5. Zhe Sun & Zhe Liu & Xiaoqi Yang, 2015. "On power penalty methods for linear complementarity problems arising from American option pricing," Journal of Global Optimization, Springer, vol. 63(1), pages 165-180, September.
    6. S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    2. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    3. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    4. Damien Lamberton & Giulia Terenzi, 2019. "Properties of the American price function in the Heston-type models," Working Papers hal-02088487, HAL.
    5. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    6. Fuzhou Gong & Ting Wang, 2022. "The Variable Volatility Elasticity Model from Commodity Markets," Papers 2203.09177, arXiv.org.
    7. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
    8. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    9. Attipoe, David Sena & Tambue, Antoine, 2021. "Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    10. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    11. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    12. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    13. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    14. Shen, Yang & Siu, Tak Kuen, 2013. "Stochastic differential game, Esscher transform and general equilibrium under a Markovian regime-switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 757-768.
    15. Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
    16. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    17. Xin‐Jiang He & Wenting Chen, 2021. "A semianalytical formula for European options under a hybrid Heston–Cox–Ingersoll–Ross model with regime switching," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 343-352, January.
    18. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    19. Cheung, Ka Chun & Yang, Hailiang, 2005. "Optimal stopping behavior of equity-linked investment products with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 599-614, December.
    20. Leisen, Dietmar P. J., 1998. "Pricing the American put option: A detailed convergence analysis for binomial models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1419-1444, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1299-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.