IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1436-5.html
   My bibliography  Save this article

An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear

Author

Listed:
  • Aurelio Montalto

    (Politecnico di Milano)

  • Serena Graziosi

    (Politecnico di Milano)

  • Monica Bordegoni

    (Politecnico di Milano)

  • Luca Di Landro

    (Politecnico di Milano)

  • Michael Johannes Leonardus Tooren

    (University of South Carolina)

Abstract

In Mass Customisation (MC), products are intrinsically variable, because they aim at satisfying end-users’ requests. Modular design and flexible manufacturing technologies are useful strategies to guarantee a wide product variability. However, in the eyewear field, the current strategies are not easily implementable, due to some eyewear peculiarities (e.g., the large variability of the frame geometry and material, and the necessity to use specific manufacturing phases). For example, acetate spectacle-frames are bent through a thermoforming process. This particular phase requires dedicated moulds, whose geometry strictly depends on the frame model to be bent; consequently, changes of the frame geometry continuously require new moulds, which have to be designed, manufactured, used, and finally stored. The purpose of this paper is to propose a new strategy to transform a dedicated tool (i.e., a thermoforming mould) into a reconfigurable one, to optimise the tool design, manufacturing and use. First, how the frame features influence the mould geometry has been investigated, creating a map of relations. On the basis of this map, the conventional monolithic-metallic mould was divided into “standard” (re-usable) and “special” (ad-hoc) modules, where the “special” ones are in charge of managing the variability of the product geometry. The mapped relations were formalised as mathematical equations and then, implemented into a Knowledge Based Engineering (KBE) system, to automatically design the “special” modules and guarantee the mould assemblability. This paper provides an original example of how a reconfigurable thermoforming mould can be conceived and how a KBE system can be used to this aim.

Suggested Citation

  • Aurelio Montalto & Serena Graziosi & Monica Bordegoni & Luca Di Landro & Michael Johannes Leonardus Tooren, 2020. "An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 87-102, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1436-5
    DOI: 10.1007/s10845-018-1436-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1436-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1436-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moustafa Gadalla & Deyi Xue, 2017. "Recent advances in research on reconfigurable machine tools: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1440-1454, March.
    2. Fogliatto, Flavio S. & da Silveira, Giovani J.C. & Borenstein, Denis, 2012. "The mass customization decade: An updated review of the literature," International Journal of Production Economics, Elsevier, vol. 138(1), pages 14-25.
    3. Da Silveira, Giovani & Borenstein, Denis & Fogliatto, Flavio S., 2001. "Mass customization: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 72(1), pages 1-13, June.
    4. Gunasekaran, A., 1999. "Agile manufacturing: A framework for research and development," International Journal of Production Economics, Elsevier, vol. 62(1-2), pages 87-105, May.
    5. MacCarthy, Bart & Brabazon, Philip G. & Bramham, Johanna, 2003. "Fundamental modes of operation for mass customization," International Journal of Production Economics, Elsevier, vol. 85(3), pages 289-304, September.
    6. Ariss, Sonny S. & Zhang, Qingyu, 2002. "The impact of flexible process capability on the product-process matrix: an empirical examination," International Journal of Production Economics, Elsevier, vol. 76(2), pages 135-145, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Murmura & Laura Bravi & Gilberto Santos, 2021. "Sustainable Process and Product Innovation in the Eyewear Sector: The Role of Industry 4.0 Enabling Technologies," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    2. Omar Ezzat & Khaled Medini & Xavier Boucher & Xavier Delorme, 2022. "A clustering approach for modularizing service-oriented systems," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 719-734, March.
    3. Chris Turner & John Oyekan, 2023. "Manufacturing in the Age of Human-Centric and Sustainable Industry 5.0: Application to Holonic, Flexible, Reconfigurable and Smart Manufacturing Systems," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    4. Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandrin, Enrico & Trentin, Alessio & Forza, Cipriano, 2018. "Leveraging high-involvement practices to develop mass customization capability: A contingent configurational perspective," International Journal of Production Economics, Elsevier, vol. 196(C), pages 335-345.
    2. Giannikas, Vaggelis & McFarlane, Duncan, 2021. "Examining the value of flexible logistics offerings," European Journal of Operational Research, Elsevier, vol. 290(3), pages 968-981.
    3. Pablo Jimenez-Moreno, 2021. "Mass Customisation for Zero-Energy Housing," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    4. Ng, Irene & Scharf, Kimberley & Pogrebna, Ganna & Maull, Roger, 2015. "Contextual variety, Internet-of-Things and the choice of tailoring over platform: Mass customisation strategy in supply chain management," International Journal of Production Economics, Elsevier, vol. 159(C), pages 76-87.
    5. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    6. Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
    7. Na Liu & Pui-Sze Chow & Hongshan Zhao, 2020. "Challenges and critical successful factors for apparel mass customization operations: recent development and case study," Annals of Operations Research, Springer, vol. 291(1), pages 531-563, August.
    8. Gedas Baranauskas & Agota Giedrė Raišienė & Renata Korsakienė, 2020. "Mapping the Scientific Research on Mass Customization Domain: A Critical Review and Bibliometric Analysis," JRFM, MDPI, vol. 13(9), pages 1-20, September.
    9. Liu, Weihua & Wang, Qian & Mao, Qiaomei & Wang, Shuqing & Zhu, Donglei, 2015. "A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP’s operation time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 189-215.
    10. A. Arrighetti & F. Landini, 2018. "Eterogeneità delle imprese e stagnazione del capitalismo italiano," Economics Department Working Papers 2018-EP01, Department of Economics, Parma University (Italy).
    11. Weihua Liu & Yi Yang & Shuqing Wang & Enze Bai, 2017. "A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement," Annals of Operations Research, Springer, vol. 257(1), pages 183-206, October.
    12. Dandan He & Zhongfu Li & Chunlin Wu & Xin Ning, 2018. "An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    13. Zhang, Min & Zhao, Xiande & Qi, Yinan, 2014. "The effects of organizational flatness, coordination, and product modularity on mass customization capability," International Journal of Production Economics, Elsevier, vol. 158(C), pages 145-155.
    14. Jafari, Hamid & Nyberg, Anna & Osnes, Tone-Lise & Schmitz, Annika, 2015. "Customization in bicycle retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 23(C), pages 77-90.
    15. Yao, Jianming & Liu, Liwen, 2009. "Optimization analysis of supply chain scheduling in mass customization," International Journal of Production Economics, Elsevier, vol. 117(1), pages 197-211, January.
    16. Rezapour, Shabnam & Hassani, Ashkan & Farahani, Reza Zanjirani, 2015. "Concurrent design of product family and supply chain network considering quality and price," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 18-35.
    17. Sardana, Deepak & Terziovski, Mile & Gupta, Narain, 2016. "The impact of strategic alignment and responsiveness to market on manufacturing firm's performance," International Journal of Production Economics, Elsevier, vol. 177(C), pages 131-138.
    18. Calle, Marcos & González-R, Pedro L. & Leon, Jose M. & Pierreval, Henri & Canca, David, 2016. "Integrated management of inventory and production systems based on floating decoupling point and real-time information: A simulation based analysis," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 48-57.
    19. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    20. Fang, Edward Aihua & Li, Xiaoyi & Lu, Jiajun, 2016. "Effects of organizational learning on process technology and operations performance in mass customizers," International Journal of Production Economics, Elsevier, vol. 174(C), pages 68-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1436-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.