Advanced Search
MyIDEAS: Login

On the existence and efficiency of the von Neumann-Morgenstern stable set in a n-player prisoners' dilemma

Contents:

Author Info

  • Noritsugu Nakanishi

    ()
    (Graduate School of Economics, Kobe University, Rokkodai-cho 2-1, Nada-ku, Kobe 657-8501, JAPAN Final version June 2001)

Abstract

We show that there exist von Neumann-Morgenstern (vN-M) stable sets in a n-player version of the prisoners' dilemma game with preplay negotiations in which every player can deviate unilaterally from the currently proposed combination of actions but can not do so jointly with other players, and that every vN-M stable set includes at least one Pareto-efficient outcome. The negotiation among the players is formulated as the "individual contingent threats situation" within the framework of the theory of social situations due to Greenberg (1990). The method of proving the existence also provides us with a step-by-step method of constructing the vN-M stable set.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://link.springer.de/link/service/journals/00182/papers/1030002/10300291.pdf
Download Restriction: Access to the full text of the articles in this series is restricted

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 30 (2001)
Issue (Month): 2 ()
Pages: 291-307

as in new window
Handle: RePEc:spr:jogath:v:30:y:2001:i:2:p:291-307

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Preplay negotiation · von Neumann-Morgenstern stable set · Prisoners' dilemma · Social situations · Pareto efficiency;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Inarra, Elena & Concepcion Larrea, M. & Saracho, Ana I., 2007. "The supercore for normal-form games," Journal of Economic Theory, Elsevier, vol. 132(1), pages 530-538, January.
    • Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Saracho de la Torre, Ana Isabel, 2003. "The Supercore for Normal Form Games," IKERLANAK 2003-04, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  2. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Saracho de la Torre, Ana Isabel, 2012. "The von Neumann-Morgenstern stable sets for 2x2 games," IKERLANAK Ikerlanak;2012-65, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:30:y:2001:i:2:p:291-307. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.