IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i2d10.1007_s10898-019-00769-y.html
   My bibliography  Save this article

A scalable global optimization algorithm for stochastic nonlinear programs

Author

Listed:
  • Yankai Cao

    (University of Wisconsin-Madison)

  • Victor M. Zavala

    (University of Wisconsin-Madison)

Abstract

We present a global optimization algorithm for two-stage stochastic nonlinear programs (NLPs). The algorithm uses a tailored reduced-space spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. At each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper bound is constructed by fixing the first-stage variables to the current candidate solution. A key advantage of this approach is that both lower and upper bounds can be computed by solving individual scenario subproblems. Another key property of this approach is that it only needs to perform branching on the first-stage variables to guarantee convergence (branching on the second-stage variables is performed implicitly during the computation of lower and upper bounds). Notably, convergence results for this scheme also hold for two-stage stochastic MINLPs with mixed-integer first-stage variables and continuous recourse variables. We present a serial implementation of the algorithm in Julia, that we call SNGO. The implementation is interfaced to the structured modeling language Plasmo.jl, which facilitates benchmarking and model processing. Our implementation incorporates typical features that help accelerate the BB search such as LP-based lower bounding techniques, local search-based upper bounding techniques, and relaxation-based bounds tightening techniques. These strategies require the solution of extensive forms of the stochastic program but can potentially be solved using structured interior-point solvers (when the problem is an NLP). Numerical experiments are performed for a controller tuning formulation, a parameter estimation formulation for microbial growth models, and a stochastic test set from GLOBALlib. We compare the computational results against SCIP and demonstrate that the proposed approach achieves significant speedups.

Suggested Citation

  • Yankai Cao & Victor M. Zavala, 2019. "A scalable global optimization algorithm for stochastic nonlinear programs," Journal of Global Optimization, Springer, vol. 75(2), pages 393-416, October.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:2:d:10.1007_s10898-019-00769-y
    DOI: 10.1007/s10898-019-00769-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00769-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00769-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Dür & R. Horst, 1997. "Lagrange Duality and Partitioning Techniques in Nonconvex Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 347-369, November.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    2. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    3. Tiago Andrade & Nikita Belyak & Andrew Eberhard & Silvio Hamacher & Fabricio Oliveira, 2022. "The p-Lagrangian relaxation for separable nonconvex MIQCQP problems," Journal of Global Optimization, Springer, vol. 84(1), pages 43-76, September.
    4. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    5. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    6. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    7. S Bilgin & M Azizoǧlu, 2006. "Capacity and tool allocation problem in flexible manufacturing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 670-681, June.
    8. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    9. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    10. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    11. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    12. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    14. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    15. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    16. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    17. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    18. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.
    19. Ventura, Jose A. & Radhakrishnan, Sanjay, 2003. "Single machine scheduling with symmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 144(3), pages 598-612, February.
    20. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:2:d:10.1007_s10898-019-00769-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.