IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i1p68-80.html
   My bibliography  Save this article

Alternate solution approaches for competitive hub location problems

Author

Listed:
  • Tiwari, Richa
  • Jayaswal, Sachin
  • Sinha, Ankur

Abstract

In this paper, we study the hub location problem of an entrant airline that tries to maximize its share in a market with already existing competing players. The problem is modeled as a non-linear integer program, which is intractable for off-the-shelf commercial solvers, like CPLEX and Gurobi, etc. Hence, we propose four alternate approaches to solve the problem. The first among them uses the Kelley’s cutting plane method, the second is based on a mixed integer second order conic program reformulation, the third uses the Kelley’s cutting plane method within Lagrangian relaxation, while the fourth uses second order conic program within Lagrangian relaxation. On the basis of extensive numerical tests on well-known datasets (CAB and AP), we conclude that the Kelley’s cutting plane within Lagrangian relaxation is computationally the best. It is able to solve all the problem instances of upto 50 nodes within 1% optimality gap in less than 10 minutes of CPU time.

Suggested Citation

  • Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:68-80
    DOI: 10.1016/j.ejor.2020.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James F. Campbell, 1996. "Hub Location and the p -Hub Median Problem," Operations Research, INFORMS, vol. 44(6), pages 923-935, December.
    2. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    3. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    4. Aykin, Turgut, 1994. "Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem," European Journal of Operational Research, Elsevier, vol. 79(3), pages 501-523, December.
    5. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2010. "The competition game on hub network design," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 618-629, May.
    6. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    7. Hasan Pirkul & David A. Schilling, 1991. "The Maximal Covering Location Problem with Capacities on Total Workload," Management Science, INFORMS, vol. 37(2), pages 233-248, February.
    8. Ivan Contreras, 2015. "Hub Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 311-344, Springer.
    9. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    10. Juan Pablo Vielma & Shabbir Ahmed & George L. Nemhauser, 2008. "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 438-450, August.
    11. Hasan Pirkul & David A. Schilling, 1998. "An Efficient Procedure for Designing Single Allocation Hub and Spoke Systems," Management Science, INFORMS, vol. 44(12-Part-2), pages 235-242, December.
    12. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    13. Bania, Neil & Bauer, Paul W. & Zlatoper, Thomas J., 1998. "U.S. Air Passenger Service: a Taxonomy of Route Networks, Hub Locations, and Competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(1), pages 53-74, March.
    14. Tae Hoon Oum & Anming Zhang & Yimin Zhang, 1995. "Airline Network Rivalry," Canadian Journal of Economics, Canadian Economics Association, vol. 28(4a), pages 836-857, November.
    15. Juan José Miranda Bront & Isabel Méndez-Díaz & Gustavo Vulcano, 2009. "A Column Generation Algorithm for Choice-Based Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 769-784, June.
    16. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    17. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    18. Kara, Bahar Y. & Tansel, Barbaros C., 2000. "On the single-assignment p-hub center problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 648-655, September.
    19. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    20. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    21. Peter G. Grove & Morton E. O'Kelly, 1986. "Hub Networks And Simulated Schedule Delay," Papers in Regional Science, Wiley Blackwell, vol. 59(1), pages 103-119, January.
    22. Navneet Vidyarthi & Sachin Jayaswal & Vikranth Babu Tirumala Chetty, 2016. "Bandwidth packing problem with queueing delays: modelling and exact solution approach," Journal of Global Optimization, Springer, vol. 65(4), pages 745-776, August.
    23. Chen, Jeng-Fung, 2007. "A hybrid heuristic for the uncapacitated single allocation hub location problem," Omega, Elsevier, vol. 35(2), pages 211-220, April.
    24. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Hui Lin & Qingyun Tian & Yanlu Zhao, 2022. "Locating facilities under competition and market expansion: Formulation, optimization, and implications," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 3021-3042, July.
    2. Birolini, Sebastian & Besana, Emanuele & Cattaneo, Mattia & Redondi, Renato & Sallan, Jose Maria, 2022. "An integrated connection planning and passenger allocation model for low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2019. "Alternate Solution Approaches for Competitive Hub Location Problems," IIMA Working Papers WP 2019-12-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Competitive hub location problem: Model and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 237-261.
    3. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2019. "Competitive Hub Location Problems: Model and Solution Approaches," IIMA Working Papers WP 2019-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    5. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    6. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    7. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    8. Juanjo Peiró & Ángel Corberán & Rafael Martí & Francisco Saldanha-da-Gama, 2019. "Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems," Transportation Science, INFORMS, vol. 53(4), pages 1126-1149, July.
    9. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.
    10. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    12. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    13. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    14. Milad Keshvari Fard & Laurent Alfandari, 2018. "Trade-offs between the Stepwise Cost Function and its Linear Approximation for the Modular Hub Location Problem," Working Papers hal-01821280, HAL.
    15. Milad , Keshvari Fard & Laurent, Alfandari, 2018. "Trade-offs between the Stepwise Cost Function and its Linear Approximation for the Modular Hub Location Problem," ESSEC Working Papers WP1805, ESSEC Research Center, ESSEC Business School.
    16. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    17. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    18. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    19. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    20. Fernández, Elena & Sgalambro, Antonino, 2020. "On carriers collaboration in hub location problems," European Journal of Operational Research, Elsevier, vol. 283(2), pages 476-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:68-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.