IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v44y1998i12-part-2ps235-s242.html
   My bibliography  Save this article

An Efficient Procedure for Designing Single Allocation Hub and Spoke Systems

Author

Listed:
  • Hasan Pirkul

    (School of Management, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083)

  • David A. Schilling

    (Department of Management Science, Fisher College of Business, Ohio State University, 2100 Neil Avenue, Columbus, Ohio 43210)

Abstract

Given the widespread use of the hub and spoke network architecture and its growing importance to competitiveness in logistics, communication, and mass transportation, there has been considerable interest by practitioners and researchers alike in finding efficient methods for designing such networks. This paper provides a method that delivers both high quality solutions and firm measures of that quality, and allows problems to be solved in reasonable time on a desktop computer. The approach begins with a previously proposed tight linear programming formulation and uses subgradient optimization on a lagrangian relaxation of the model. However, to dramatically improve the performance of this approach, we augment a subproblem of the lagrangian relaxation model with a cut constraint. In computational experiments on eighty-four standard test problems, average gaps are 0.048%. Maximum gaps are under 1% while average solution times on a Pentium-166 are under five minutes.

Suggested Citation

  • Hasan Pirkul & David A. Schilling, 1998. "An Efficient Procedure for Designing Single Allocation Hub and Spoke Systems," Management Science, INFORMS, vol. 44(12-Part-2), pages 235-242, December.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:12-part-2:p:s235-s242
    DOI: 10.1287/mnsc.44.12.S235
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.12.S235
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.12.S235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aykin, Turgut, 1994. "Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem," European Journal of Operational Research, Elsevier, vol. 79(3), pages 501-523, December.
    2. Hasan Pirkul & David A. Schilling, 1991. "The Maximal Covering Location Problem with Capacities on Total Workload," Management Science, INFORMS, vol. 37(2), pages 233-248, February.
    3. Turgut Aykin, 1995. "Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System," Transportation Science, INFORMS, vol. 29(3), pages 201-221, August.
    4. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    5. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka, 1994. "On tabu search for the location of interacting hub facilities," European Journal of Operational Research, Elsevier, vol. 73(3), pages 502-509, March.
    6. Hasan Pirkul & David A. Schilling, 1988. "The Siting of Emergency Service Facilities with Workload Capacities and Backup Service," Management Science, INFORMS, vol. 34(7), pages 896-908, July.
    7. Klincewicz, J. G., 1991. "Heuristics for the p-hub location problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 25-37, July.
    8. Morton O'Kelly & Darko Skorin-Kapov & Jadranka Skorin-Kapov, 1995. "Lower Bounds for the Hub Location Problem," Management Science, INFORMS, vol. 41(4), pages 713-721, April.
    9. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    10. Mirchandani, Pitu B. & Oudjit, Aissa & Wong, Richard T., 1985. "`Multidimensional' extensions and a nested dual approach for the m-median problem," European Journal of Operational Research, Elsevier, vol. 21(1), pages 121-137, July.
    11. Bazaraa, Mokhtar S. & Goode, Jamie J., 1979. "A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality," European Journal of Operational Research, Elsevier, vol. 3(4), pages 322-338, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    2. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    4. Ebery, Jamie, 2001. "Solving large single allocation p-hub problems with two or three hubs," European Journal of Operational Research, Elsevier, vol. 128(2), pages 447-458, January.
    5. Ebery, Jamie & Krishnamoorthy, Mohan & Ernst, Andreas & Boland, Natashia, 2000. "The capacitated multiple allocation hub location problem: Formulations and algorithms," European Journal of Operational Research, Elsevier, vol. 120(3), pages 614-631, February.
    6. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    7. Sohn, Jinhyeon & Park, Sungsoo, 1998. "Efficient solution procedure and reduced size formulations for p-hub location problems," European Journal of Operational Research, Elsevier, vol. 108(1), pages 118-126, July.
    8. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part I---Introduction and Results," Management Science, INFORMS, vol. 51(10), pages 1540-1555, October.
    9. Sung, C. S. & Jin, H. W., 2001. "Dual-based approach for a hub network design problem under non-restrictive policy," European Journal of Operational Research, Elsevier, vol. 132(1), pages 88-105, July.
    10. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    11. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    12. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    13. Ishfaq, Rafay & Sox, Charles R., 2011. "Hub location-allocation in intermodal logistic networks," European Journal of Operational Research, Elsevier, vol. 210(2), pages 213-230, April.
    14. Sophie D. Lapierre & Angel B. Ruiz & Patrick Soriano, 2004. "Designing Distribution Networks: Formulations and Solution Heuristic," Transportation Science, INFORMS, vol. 38(2), pages 174-187, May.
    15. Sohn, Jinhyeon & Park, Sungsoo, 1997. "A linear program for the two-hub location problem," European Journal of Operational Research, Elsevier, vol. 100(3), pages 617-622, August.
    16. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2019. "Alternate Solution Approaches for Competitive Hub Location Problems," IIMA Working Papers WP 2019-12-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Mohammad Mahdi Nasiri & Amir Khaleghi & Kannan Govindan & Ali Bozorgi-Amiri, 2023. "Sustainable hierarchical multi-modal hub network design problem: bi-objective formulations and solution algorithms," Operational Research, Springer, vol. 23(2), pages 1-62, June.
    18. Saberi, Meead & Mahmassani, Hani S., 2013. "Modeling the airline hub location and optimal market problems with continuous approximation techniques," Journal of Transport Geography, Elsevier, vol. 30(C), pages 68-76.
    19. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2019. "Competitive Hub Location Problems: Model and Solution Approaches," IIMA Working Papers WP 2019-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:12-part-2:p:s235-s242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.