IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i1p29-54.html
   My bibliography  Save this article

The robust crew pairing problem: model and solution methodology

Author

Listed:
  • Da Lu
  • Fatma Gzara

Abstract

We present a new robust formulation for the crew pairing problem where flight and connection times are random and vary within an interval. The model protects against infeasibility with a specified level of uncertainty and minimizes crew cost in the worst case. The resulting robust terms in the objective function and in the resource constraints are nonlinear. We apply Lagrangian relaxation to separate the nonlinear terms in the subproblem leading to a new robust formulation of the shortest path problem with resource constraints. We show that the nonlinear subproblem can be solved as a series of linear auxiliary problems. The proposed solution methodology was successful to solve industry instances in very competitive times and led to more robust crew pairing solutions as shown by simulation experiments. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Da Lu & Fatma Gzara, 2015. "The robust crew pairing problem: model and solution methodology," Journal of Global Optimization, Springer, vol. 62(1), pages 29-54, May.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:1:p:29-54
    DOI: 10.1007/s10898-014-0222-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0222-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0222-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergey Shebalov & Diego Klabjan, 2006. "Robust Airline Crew Pairing: Move-up Crews," Transportation Science, INFORMS, vol. 40(3), pages 300-312, August.
    2. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    3. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    4. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    5. Cynthia Barnhart & Levent Hatay & Ellis L. Johnson, 1995. "Deadhead Selection for the Long-Haul Crew Pairing Problem," Operations Research, INFORMS, vol. 43(3), pages 491-499, June.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    8. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    9. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    10. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    11. Alexandra Makri & Diego Klabjan, 2004. "A New Pricing Scheme for Airline Crew Scheduling," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 56-67, February.
    12. Kohl, Niklas & Larsen, Allan & Larsen, Jesper & Ross, Alex & Tiourine, Sergey, 2007. "Airline disruption management—Perspectives, experiences and outlook," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 149-162.
    13. Lavoie, Sylvie & Minoux, Michel & Odier, Edouard, 1988. "A new approach for crew pairing problems by column generation with an application to air transportation," European Journal of Operational Research, Elsevier, vol. 35(1), pages 45-58, April.
    14. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    15. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    16. Vinayak Deshpande & Mazhar Arıkan, 2012. "The Impact of Airline Flight Schedules on Flight Delays," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 423-440, July.
    17. Milind Sohoni & Yu-Ching Lee & Diego Klabjan, 2011. "Robust Airline Scheduling Under Block-Time Uncertainty," Transportation Science, INFORMS, vol. 45(4), pages 451-464, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    2. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    3. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    4. David Antunes & Vikrant Vaze & António Pais Antunes, 2019. "A Robust Pairing Model for Airline Crew Scheduling," Transportation Science, INFORMS, vol. 53(6), pages 1751-1771, November.
    5. Vojtech Graf & Dusan Teichmann & Michal Dorda & Lenka Kontrikova, 2021. "Dynamic Model of Contingency Flight Crew Planning Extending to Crew Formation," Mathematics, MDPI, vol. 9(17), pages 1-28, September.
    6. Keji Wei & Vikrant Vaze, 2018. "Modeling Crew Itineraries and Delays in the National Air Transportation System," Transportation Science, INFORMS, vol. 52(5), pages 1276-1296, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    2. Gary Froyland & Stephen J. Maher & Cheng-Lung Wu, 2014. "The Recoverable Robust Tail Assignment Problem," Transportation Science, INFORMS, vol. 48(3), pages 351-372, August.
    3. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    4. Chiwei Yan & Jerry Kung, 2018. "Robust Aircraft Routing," Transportation Science, INFORMS, vol. 52(1), pages 118-133, January.
    5. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    6. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    7. Sai Ho Chung & Hoi Lam Ma & Hing Kai Chan, 2017. "Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1443-1458, August.
    8. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    9. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    10. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    11. David Antunes & Vikrant Vaze & António Pais Antunes, 2019. "A Robust Pairing Model for Airline Crew Scheduling," Transportation Science, INFORMS, vol. 53(6), pages 1751-1771, November.
    12. Keji Wei & Vikrant Vaze, 2018. "Modeling Crew Itineraries and Delays in the National Air Transportation System," Transportation Science, INFORMS, vol. 52(5), pages 1276-1296, October.
    13. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    14. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    15. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    16. Sujeevraja Sanjeevi & Saravanan Venkatachalam, 2021. "Robust flight schedules with stochastic programming," Annals of Operations Research, Springer, vol. 305(1), pages 403-421, October.
    17. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    18. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    19. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    20. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:1:p:29-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.