IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v35y2018i3d10.1007_s00357-018-9268-8.html
   My bibliography  Save this article

Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States

Author

Listed:
  • Xu Gao

    (University of California)

  • Babak Shahbaba

    (University of California)

  • Hernando Ombao

    (University of California
    King Abdullah University of Science and Technology)

Abstract

Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.

Suggested Citation

  • Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
  • Handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9268-8
    DOI: 10.1007/s00357-018-9268-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-018-9268-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-018-9268-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindquist, Martin A. & McKeague, Ian W., 2009. "Logistic Regression With Brownian-Like Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1575-1585.
    2. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    3. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    4. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    5. McCullagh, Peter, 1984. "Generalized linear models," European Journal of Operational Research, Elsevier, vol. 16(3), pages 285-292, June.
    6. Fangpo Wang & Alan E. Gelfand, 2014. "Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1565-1580, December.
    7. Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
    8. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    9. Fokianos, Konstantinos & Kedem, Benjamin, 1998. "Prediction and Classification of Non-stationary Categorical Time Series," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 277-296, November.
    10. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Euán, Carolina & Sun, Ying, 2020. "Bernoulli vector autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    2. Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    2. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    3. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    4. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
    5. Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
    6. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    7. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
    8. Bo Zhou & David E. Moorman & Sam Behseta & Hernando Ombao & Babak Shahbaba, 2016. "A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 459-471, April.
    9. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    11. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    12. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    13. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    14. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
    16. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    17. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    18. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    19. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    20. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9268-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.