IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v23y2018i3d10.1007_s13253-018-0324-y.html
   My bibliography  Save this article

Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape

Author

Listed:
  • V. Brault

    (CNRS, LJK)

  • C. Lévy-Leduc

    (Université Paris-Saclay)

  • A. Mathieu

    (Université Paris-Saclay)

  • A. Jullien

    (Université Paris-Saclay)

Abstract

In this paper, we address the change-point estimation issue in multivariate observations which consist in functions having piecewise constant first derivatives corrupted by some additional noise. We propose to solve this problem by rewriting it as a variable selection issue in a sparse multivariate linear model. Moreover, the methodology that we propose takes into account the dependence that may exist within the multivariate observations. Then, the performance of our approach is assessed through some numerical experiments and compared to other alternative and classical methods. Finally, we apply our methodology to experimental data in order to study the vegetative development of oilseed rape. The evolution of the number of leaves of oilseed rape can be modeled as a function having piecewise constant first derivatives corrupted by some additional noise where the change-points correspond to key times in the plant phenology. Our novel estimation method increases the accuracy of the change-point estimation in comparison with classical approaches. Moreover, we show that the parameters of the covariance matrix depend on the level of competition between plants. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • V. Brault & C. Lévy-Leduc & A. Mathieu & A. Jullien, 2018. "Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 374-389, September.
  • Handle: RePEc:spr:jagbes:v:23:y:2018:i:3:d:10.1007_s13253-018-0324-y
    DOI: 10.1007/s13253-018-0324-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-018-0324-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-018-0324-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    2. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    3. Harchaoui, Z. & Lévy-Leduc, C., 2010. "Multiple Change-Point Estimation With a Total Variation Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1480-1493.
    4. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    5. Lajos Horváth & Marie Hušková, 2012. "Change-point detection in panel data," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(4), pages 631-648, July.
    6. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    3. Otilia Boldea & Bettina Drepper & Zhuojiong Gan, 2020. "Change point estimation in panel data with time‐varying individual effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 712-727, September.
    4. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    5. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    7. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
    8. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    9. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    10. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
    11. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
    12. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    13. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    14. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    15. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Shu, Lei & Chen, Yu & Zhang, Weiping & Wang, Xueqin, 2022. "Spatial rank-based high-dimensional change point detection via random integration," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. S. O. Tickle & I. A. Eckley & P. Fearnhead, 2021. "A computationally efficient, high‐dimensional multiple changepoint procedure with application to global terrorism incidence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1303-1325, October.
    18. Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).
    19. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Mar 2023.
    20. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:3:d:10.1007_s13253-018-0324-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.