IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i5d10.1007_s13198-019-00852-3.html
   My bibliography  Save this article

Modelling and simulation of repairable mechanical systems reliability and availability

Author

Listed:
  • Girish Kumar

    (Delhi Technological University)

  • Vipul Jain

    (Victoria University of Wellington)

  • Umang Soni

    (Netaji Subhas University of Technology)

Abstract

Markov approach is applicable for reliability and availability modelling when time to failure and repair follow an exponential distribution. Since failure time of mechanical components follows Weibull distribution, Markov approach cannot be employed to these systems. In present work, Semi-Markov model, which is appropriate for repairable mechanical systems, is considered. In structural dependency, once a unit of a repairable system is failed due to one or more of its constituent components, the entire unit is taken for repair. Therefore, the repairs are considered at the unit level. This feature of structural dependency in the proposed approach addresses the problem of larger state space. The states at the unit level are derived from the component states to develop the system model. The solutions for reliability and availability are obtained using the Monte Carlo simulation. The suggested approach is realistic than the existing software’s such as Rapid Algorithmic Prototyping Tool for Ordered Reasoning, Blocksim, etc., as failures and repairs are considered at different hierarchical levels. The recommended approach is illustrated for a centrifugal pumping system.

Suggested Citation

  • Girish Kumar & Vipul Jain & Umang Soni, 2019. "Modelling and simulation of repairable mechanical systems reliability and availability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1221-1233, October.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:5:d:10.1007_s13198-019-00852-3
    DOI: 10.1007/s13198-019-00852-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00852-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00852-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T M Welte, 2009. "A rule-based approach for establishing states in a Markov process applied to maintenance modelling," Journal of Risk and Reliability, , vol. 223(1), pages 1-12, March.
    2. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    3. Zio, E. & Marella, M. & Podofillini, L., 2007. "A Monte Carlo simulation approach to the availability assessment of multi-state systems with operational dependencies," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 871-882.
    4. Jeffrey Kharoufeh & Christopher Solo & M. Ulukus, 2010. "Semi-Markov models for degradation-based reliability," IISE Transactions, Taylor & Francis Journals, vol. 42(8), pages 599-612.
    5. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    6. Chen, Dongyan & Trivedi, Kishor S., 2005. "Optimization for condition-based maintenance with semi-Markov decision process," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 25-29.
    7. Olga Fink & Enrico Zio, 2013. "Semi-Markov processes with semi-regenerative states for the availability analysis of chemical process plants with storage units," Journal of Risk and Reliability, , vol. 227(3), pages 279-289, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    3. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    5. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    7. Huixia Huo, 2024. "Optimal Corrective Maintenance Policies via an Availability-Cost Hybrid Factor for Software Aging Systems," Mathematics, MDPI, vol. 12(5), pages 1-14, February.
    8. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    10. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Radim Briš & Nuong Thi Thuy Tran, 2023. "Discrete Model for a Multi-Objective Maintenance Optimization Problem of Safety Systems," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    13. Panagiotidou, S. & Tagaras, G., 2012. "Optimal integrated process control and maintenance under general deterioration," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 58-70.
    14. Esi Saari & Jing Lin & Liangwei Zhang & Bin Liu, 2019. "System availability assessment using a parametric Bayesian approach: a case study of balling drums," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 739-745, August.
    15. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2010. "Adequacy evaluation of wind power generation systems," Energy, Elsevier, vol. 35(12), pages 5217-5222.
    16. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    17. Wenbin Cao & Xisheng Jia & Yu Liu & Qiwei Hu & Jianmin Zhao, 2019. "Selective maintenance optimisation considering random common cause failures and imperfect maintenance," Journal of Risk and Reliability, , vol. 233(3), pages 427-443, June.
    18. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    19. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    20. Alberto Reyes & L. Enrique Sucar & Pablo H. Ibargüengoytia & Eduardo F. Morales, 2020. "Planning Under Uncertainty Applications in Power Plants Using Factored Markov Decision Processes," Energies, MDPI, vol. 13(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:5:d:10.1007_s13198-019-00852-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.