IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v31y2019i3d10.1007_s10696-018-9327-9.html
   My bibliography  Save this article

A robust optimization model for the maritime inventory routing problem

Author

Listed:
  • Gustavo Souto dos Santos Diz

    (Petrobras)

  • Silvio Hamacher

    (PUC-Rio)

  • Fabricio Oliveira

    (Aalto University (AALTO))

Abstract

Uncertainty is a highly important aspect of maritime transportation. Unforeseen occurrences related to environmental conditions, poor weather, vessel reliability, or port congestion are frequent and have a non-negligible impact on the total time required for vessels to perform (un)loading operations at ports. We study a special case of maritime transportation named the maritime inventory routing (MIR) problem, in which one must determine the routings of vessels while keeping the inventory levels at ports within the operational limits. In this paper, we propose a robust optimization approach that considers the uncertainty in the total time spent by vessels at the ports. This approach allows the trade-off between the risk of infeasibility (i.e., violating inventory limits at ports) and the increase in operational costs due to the protection against uncertainty events to be assessed. To test the proposed methodology, we used a real-world instance based on the MIR problem faced by a Brazilian petroleum company. In this problem, violating the inventory limits at ports causes considerable financial losses due to consequent interruptions in crude oil production. Our approach supports the decision maker to devise more robust plans in which the risk of violating inventory limits is acceptable. In other words, despite the increase in the operational costs associated with more robust solutions, the approach enables the decision maker to avoid much larger potential costs. For the problem considered, we observed that the probability of infeasibility of the proposed solution may be reduced from 87% to 2%, depending on the level of robustness adopted by the decision maker. However, this increased protection causes an increase of up to 13% in the overall costs.

Suggested Citation

  • Gustavo Souto dos Santos Diz & Silvio Hamacher & Fabricio Oliveira, 2019. "A robust optimization model for the maritime inventory routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 675-701, September.
  • Handle: RePEc:spr:flsman:v:31:y:2019:i:3:d:10.1007_s10696-018-9327-9
    DOI: 10.1007/s10696-018-9327-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-018-9327-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-018-9327-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Souto dos Santos Diz & Fabrício Oliveira & Silvio Hamacher, 2017. "Improving maritime inventory routing: application to a Brazilian petroleum case," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(1), pages 42-61, January.
    2. Kevin C. Furman & Jin-Hwa Song & Gary R. Kocis & Michael K. McDonald & Philip H. Warrick, 2011. "Feedstock Routing in the ExxonMobil Downstream Sector," Interfaces, INFORMS, vol. 41(2), pages 149-163, April.
    3. de Assis, Leonardo Salsano & Camponogara, Eduardo, 2016. "A MILP model for planning the trips of dynamic positioned tankers with variable travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 372-388.
    4. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    5. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    6. Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
    7. Roger Rocha & Ignacio Grossmann & Marcus Poggi de Aragão, 2013. "Cascading Knapsack Inequalities: reformulation of a crude oil distribution problem," Annals of Operations Research, Springer, vol. 203(1), pages 217-234, March.
    8. Christiansen, Marielle & Fagerholt, Kjetil & Flatberg, Truls & Haugen, Øyvind & Kloster, Oddvar & Lund, Erik H., 2011. "Maritime inventory routing with multiple products: A case study from the cement industry," European Journal of Operational Research, Elsevier, vol. 208(1), pages 86-94, January.
    9. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    12. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    13. Marielle Christiansen & Bjørn Nygreen, 2005. "Robust Inventory Ship Routing by Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 197-224, Springer.
    14. AGRA, Agostinho & ANDERSSON, Henrik & CHRISTIANSEN, Marielle & WOLSEY, Laurence A., 2013. "A maritime inventory routing problem: discrete time formulations and valid inequalities," LIDAM Reprints CORE 2584, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Papageorgiou, Dimitri J. & Nemhauser, George L. & Sokol, Joel & Cheon, Myun-Seok & Keha, Ahmet B., 2014. "MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results," European Journal of Operational Research, Elsevier, vol. 235(2), pages 350-366.
    16. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjetil Fagerholt & Kap Hwan Kim & Qiang Meng & Julio César Góez & Frank Meisel & Magnus Stålhane, 2019. "Analytics and models for maritime logistics and systems," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 563-566, September.
    2. Abdalrahman Algendi & Sebastián Urrutia & Lars Magnus Hvattum, 2023. "Optimizing production levels in maritime inventory routing with load-dependent speed optimization," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 111-141, March.
    3. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    4. Yazdani, Majid & Aouam, Tarik, 2023. "Shipment planning and safety stock placement in maritime supply chains with stochastic demand and transportation times," International Journal of Production Economics, Elsevier, vol. 263(C).
    5. Ji, Ying & Du, Jianhui & Han, Xiaoya & Wu, Xiaoqing & Huang, Ripeng & Wang, Shilei & Liu, Zhimin, 2020. "A mixed integer robust programming model for two-echelon inventory routing problem of perishable products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mutlu, Fatih & Msakni, Mohamed K. & Yildiz, Hakan & Sönmez, Erkut & Pokharel, Shaligram, 2016. "A comprehensive annual delivery program for upstream liquefied natural gas supply chain," European Journal of Operational Research, Elsevier, vol. 250(1), pages 120-130.
    2. Hemmati, Ahmad & Hvattum, Lars Magnus & Christiansen, Marielle & Laporte, Gilbert, 2016. "An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 775-788.
    3. Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
    4. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.
    5. Papageorgiou, Dimitri J. & Nemhauser, George L. & Sokol, Joel & Cheon, Myun-Seok & Keha, Ahmet B., 2014. "MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results," European Journal of Operational Research, Elsevier, vol. 235(2), pages 350-366.
    6. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    7. Agostinho Agra & Marielle Christiansen & Kristine S. Ivarsøy & Ida Elise Solhaug & Asgeir Tomasgard, 2017. "Combined ship routing and inventory management in the salmon farming industry," Annals of Operations Research, Springer, vol. 253(2), pages 799-823, June.
    8. Rodrigues, Filipe & Agra, Agostinho & Christiansen, Marielle & Hvattum, Lars Magnus & Requejo, Cristina, 2019. "Comparing techniques for modelling uncertainty in a maritime inventory routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 831-845.
    9. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    10. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    11. Yazdani, Majid & Aouam, Tarik, 2023. "Shipment planning and safety stock placement in maritime supply chains with stochastic demand and transportation times," International Journal of Production Economics, Elsevier, vol. 263(C).
    12. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    13. Nooshin Heidari & Ahmad Hemmati, 2023. "An ALNS-based matheuristic algorithm for a multi-product many-to-many maritime inventory routing problem," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    14. Jørgen Bjaarstad Nikolaisen & Sofie Smith Vågen & Peter Schütz, 2023. "Solving a maritime inventory routing problem under uncertainty using optimization and simulation," Computational Management Science, Springer, vol. 20(1), pages 1-27, December.
    15. de Assis, Leonardo Salsano & Camponogara, Eduardo, 2016. "A MILP model for planning the trips of dynamic positioned tankers with variable travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 372-388.
    16. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    17. Xu, Dongyang & Li, Kunpeng & Zou, Xuxia & Liu, Ling, 2017. "An unpaired pickup and delivery vehicle routing problem with multi-visit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 218-247.
    18. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.
    20. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:31:y:2019:i:3:d:10.1007_s10696-018-9327-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.