IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v28y2016i1d10.1007_s10696-015-9213-7.html
   My bibliography  Save this article

Operating room scheduling and rescheduling: a rolling horizon approach

Author

Listed:
  • Bernardetta Addis

    (Université de Lorraine, INRIA Nancy-Grand Est)

  • Giuliana Carello

    (Politecnico di Milano)

  • Andrea Grosso

    (Università di Torino)

  • Elena Tànfani

    (Università di Genova)

Abstract

In this work we consider the problem of selecting a set of patients among a given waiting list of elective patients and assigning them to a set of available operating room blocks. We assume a block scheduling strategy in which the number and the length of available blocks are given. As each block is related to a specific day, by assigning a patient to a block his/her surgery date is fixed, as well. Each patient is characterized by a recommended maximum waiting time and an uncertain surgery duration. In practical applications, new patients enter the waiting list continuously. Patient selection and assignment is performed by surgery departments on a short-term, usually a week, regular base. We propose a so-called rolling horizon approach for the patient selection and assignment. At each iteration short-term patient assignment is decided. However, in a look-ahead perspective, a longer planning horizon is considered when looking for the patient selection. The mid-term assignment over the next $$n$$ n weeks is generated by solving an ILP problem, minimizing a penalty function based on total waiting time and tardiness of patients. The approach is iteratively applied by shifting ahead the mid-term planning horizon. When applying the first week solution, unpredictable extensions of surgeries may disrupt the schedule. Such disruptions are recovered in the next iteration: the mid-term solution is rescheduled limiting the number of variations from the previously computed plan. Besides, the approach allows to deal with new patient arrivals. To keep limited the number of disruptions due to uncertain surgery duration, we propose also a robust formulation of the ILP problem. The deterministic and the robust formulation based frameworks are compared over a set of instances, including different stochastic realization of surgery times.

Suggested Citation

  • Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
  • Handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-015-9213-7
    DOI: 10.1007/s10696-015-9213-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-015-9213-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-015-9213-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    2. Adan, Ivo & Bekkers, Jos & Dellaert, Nico & Jeunet, Jully & Vissers, Jan, 2011. "Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources," European Journal of Operational Research, Elsevier, vol. 213(1), pages 290-308, August.
    3. Elena Tànfani & Angela Testi, 2010. "A pre-assignment heuristic algorithm for the Master Surgical Schedule Problem (MSSP)," Annals of Operations Research, Springer, vol. 178(1), pages 105-119, July.
    4. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    7. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    8. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    9. J. Essen & Johann Hurink & Woutske Hartholt & Bernd Akker, 2012. "Decision support system for the operating room rescheduling problem," Health Care Management Science, Springer, vol. 15(4), pages 355-372, December.
    10. Jeroen Oostrum & Eelco Bredenhoff & Erwin Hans, 2010. "Suitability and managerial implications of a Master Surgical Scheduling approach," Annals of Operations Research, Springer, vol. 178(1), pages 91-104, July.
    11. Fei, H. & Chu, C. & Meskens, N. & Artiba, A., 2008. "Solving surgical cases assignment problem by a branch-and-price approach," International Journal of Production Economics, Elsevier, vol. 112(1), pages 96-108, March.
    12. V. Augusto & X. Xie & V. Perdomo, 2008. "Operating theatre scheduling using Lagrangian relaxation," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(2), pages 172-189.
    13. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Belinda Spratt & Erhan Kozan, 2021. "An integrated rolling horizon approach to increase operating theatre efficiency," Journal of Scheduling, Springer, vol. 24(1), pages 3-25, February.
    3. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    4. Vandenberghe, Mathieu & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Bruneel, Herwig, 2019. "Surgery sequencing to minimize the expected maximum waiting time of emergent patients," European Journal of Operational Research, Elsevier, vol. 275(3), pages 971-982.
    5. Glomb, Lukas & Liers, Frauke & Rösel, Florian, 2022. "A rolling-horizon approach for multi-period optimization," European Journal of Operational Research, Elsevier, vol. 300(1), pages 189-206.
    6. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    7. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.
    8. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    9. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    10. Javiera Barrera & Rodrigo A. Carrasco & Susana Mondschein & Gianpiero Canessa & David Rojas-Zalazar, 2020. "Operating room scheduling under waiting time constraints: the Chilean GES plan," Annals of Operations Research, Springer, vol. 286(1), pages 501-527, March.
    11. Francisco Ballestín & Ángeles Pérez & Sacramento Quintanilla, 2019. "Scheduling and rescheduling elective patients in operating rooms to minimise the percentage of tardy patients," Journal of Scheduling, Springer, vol. 22(1), pages 107-118, February.
    12. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    13. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    14. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    15. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    16. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    17. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    3. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    4. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    5. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    6. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    7. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    8. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    9. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    10. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    11. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    12. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    13. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    14. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    15. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    16. Filippo Visintin & Paola Cappanera & Carlo Banditori, 2016. "Evaluating the impact of flexible practices on the master surgical scheduling process: an empirical analysis," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 182-205, June.
    17. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    18. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2016. "Dynamic job assignment: A column generation approach with an application to surgery allocation," Discussion Papers on Economics 4/2016, University of Southern Denmark, Department of Economics.
    19. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    20. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-015-9213-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.