IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v7y2018i3d10.1007_s13676-016-0102-3.html
   My bibliography  Save this article

A decomposition method for estimating recursive logit based route choice models

Author

Listed:
  • Tien Mai

    (Polytechnique Montréal)

  • Fabian Bastin

    (Université de Montréal and CIRRELT)

  • Emma Frejinger

    (Université de Montréal and CIRRELT)

Abstract

Fosgerau et al. (2013) recently proposed the recursive logit (RL) model for route choice problems, that can be consistently estimated and easily used for prediction without any sampling of choice sets. Its estimation however requires solving many large-scale systems of linear equations, which can be computationally costly for real data sets. We design a decomposition (DeC) method in order to reduce the number of linear systems to be solved, opening the possibility to estimate more complex RL based models, for instance mixed RL models. We test the performance of the DeC method by estimating the RL model on two networks of more than 7000 and 40,000 links, and we show that the DeC method significantly reduces the estimation time. We also use the DeC method to estimate two mixed RL specifications, one using random coefficients and one incorporating error components associated with subnetworks (Frejinger and Bierlaire 2007). The models are estimated on a real network and a cross-validation study is performed. The results suggest that the mixed RL models can be estimated in a reasonable time with the DeC method. These models yield sensible parameter estimates and the in-sample and out-of sample fits are significantly better than the RL model.

Suggested Citation

  • Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
  • Handle: RePEc:spr:eurjtl:v:7:y:2018:i:3:d:10.1007_s13676-016-0102-3
    DOI: 10.1007/s13676-016-0102-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-016-0102-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-016-0102-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    3. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    6. Lai, Xinjun & Bierlaire, Michel, 2015. "Specification of the cross-nested logit model with sampling of alternatives for route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 220-234.
    7. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    8. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    9. Munger, D. & L’Ecuyer, P. & Bastin, F. & Cirillo, C. & Tuffin, B., 2012. "Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 305-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    2. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
    5. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    6. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    7. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    8. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    9. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
    10. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    11. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
    2. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    3. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    4. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
    5. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
    6. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
    7. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    8. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    9. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    10. Knies, Austin & Lorca, Jorge & Melo, Emerson, 2022. "A recursive logit model with choice aversion and its application to transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 47-71.
    11. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    12. Ding-Mastera, Jing & Gao, Song & Jenelius, Erik & Rahmani, Mahmood & Ben-Akiva, Moshe, 2019. "A latent-class adaptive routing choice model in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 1-17.
    13. C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
    14. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    15. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    16. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    17. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    18. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
    19. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    20. Saxena, N. & Rashidi, T.H. & Dixit, V.V. & Waller, S.T., 2019. "Modelling the route choice behaviour under stop-&-go traffic for different car driver segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 62-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:7:y:2018:i:3:d:10.1007_s13676-016-0102-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.